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Abstract

To recognize objects, the human visual system processes in-
formation through a network of hierarchically organized brain
regions. Many neurocomputational models have modeled this
hierarchical structure, but they have often used hand-crafted
features to model early visual areas. According to the linear ef-
ficient coding hypothesis, the goal of the early visual pathway
is to capture the statistical structure of sensory stimuli, remov-
ing redundancy, and factoring the input into independent fea-
tures. In this work, we use a hierarchical Independent Compo-
nents Analysis (ICA) algorithm to automatically learn the vi-
sual features that account for early visual cortex. We then con-
tinue modeling the object recognition pathway using Gnostic
Fields, a theory for how the brain does object categorization, in
which brain regions devoted to classifying mutually-exclusive
categories exist near the top of sensory processing hierarchies.
The whole biologically-inspired model not only allows us to
develop representations similar to those in primary visual cor-
tex, but also to perform well on standard computer vision ob-
ject recognition benchmarks.
Keywords: object recognition; Independent Component Anal-
ysis; Gnostic Fields; deep model

Introduction
Over the years, researchers have built many models of ob-
ject recognition that are informed by findings in neuro-
science. Four of the best known models are the O’Reilly
and Munakata model (OReilly & Munakata, 2000), HMAX
(Riesenhuber & Poggio, 1999), VisNet (Wallis & Rolls,
1996), and The Model (”TM”, Dailey and Cottrell (1999)). In
O’Reilly and Munakata, the visual input is first transformed
by a center-surround transformation, followed by the pro-
cessing of V1, V2, V4 and PFC, with realistic neural con-
straints and increasingly large receptive fields. The HMAX
model uses a hierarchical structure with alternating layers
of units that are selective for complex features (S units) and
units that have increasing tolerance to position and scale (C
units), with the top layer of the hierarchy containing view-
tuned and task-related units that correspond to processing
done by IT and PFC. VisNet shares a similar structure with
HMAX, but the input is filtered by Differential of Gaussian
(DoG) filters before feeding into the 4 hierarchical competi-
tive network that correspond to V2, V4, PIT and AIT, and the
synapse weights are learned using Hebbian learning rule. TM

is aimed to model cognitive phenomena such as the develop-
ment of hemispheric lateralization (Wang & Cottrell, 2013)
and experience moderation effect of face and object recog-
nition (Wang, Gauthier, & Cottrell, 2014), and the input is
processed by a Gabor-PCA system, which is used as input to
a multi-layer perceptron neural network.

One limitation of these models is that they all use hand-
crafted features to simulate visual processing done by the
retina, LGN, or primary visual cortex: DoG filters in Vis-
Net, Gabor filters in TM and S1 units of HMAX, and the pre-
set parameter of S2 units in HMAX. In mammals, this is not
how the early visual system develops its representations. It
develops visual features as visual experience is acquired, and
these visual representations are likely learned in a mostly un-
supervised manner, since these features are universal across
visual tasks. In this paper, we describe a model that uses hi-
erarchical Independent Components Analysis (ICA) to learn
a hierarchy of visual filters that can extract diagnostic visual
features from images. To recognize objects, we combine the
learned ICA filters with gnostic fields, which simulates IT.

The ICA algorithm is an implementation of Barlow’s linear
efficient encoding hypothesis (Barlow, 1961), which hypoth-
esizes that the goal of early vision is to reduce the redundancy
of the input, from which the statistical structure can be cap-
tured. One-layer ICA has been used to explain the very first
layer of information processing in the visual cortex (Bell &
Sejnowski, 1997; Olshausen & Field, 1996). More recently,
Shan, Zhang, and Cottrell (2006) proposed a recursive im-
plementation of ICA, which captures the higher order struc-
ture. Our hierarchical model adopts the basic idea of recur-
sive ICA, but with different implementation.

ICA is not sufficient for the system to output labels for each
category; supervised learning is needed. To do this, we use
Gnostic Fields, a state-of-the-art algorithm for object recog-
nition (Kanan, 2013a, 2014). Gnostic Fields are based on
based on Konorski’s theory (Konorski, 1967) for how the
brain recognizes objects. In this theory, Gnostic Fields are
brain regions that exist near the top of the sensory informa-
tion processing hierarchy, and they are responsible for object



recognition. A gnostic field is composed of competing gnos-
tic sets, with each set representing one category. Each gnostic
set contains multiple gnostic neurons, and they encode par-
ticular properties of an object while maintaining a degree of
invariance to scale, location, or appearance. fMRI studies
suggest that the brain does develop regions that are especially
active during object recognition tasks, such as the fusiform
face area (FFA) for face recognition (Kanwisher, McDermott,
& Chun, 1997) and the visual word form area for recognizing
words (McCandliss, Cohen, & Dehaene, 2003).

In the next sections, we give implementation details for our
model, an analysis of visual filters learned by the model, re-
sults on benchmark computer vision datasets, and we discuss
future directions for the model.

Methods
Figure 1 depicts the structure of our model, which consists
of image pre-processing inspired by the retina, visual filters
learned using hierarchical ICA, and then a gnostic field that
performs object classification.

Image Preprocessing
While most object recognition systems start from modeling
with V1, we begin with pre-cortical processing done by the
retina. We first resize the input image so that its smallest di-
mension is 128 pixels, with the other dimension resized to
preserve the aspect ratio. Subsequently, we convert the image
from standard RGB (sRGB) color space to LMS colorspace
(Fairchild, 2013), which simulates the retina’s long, medium,
and short wavelength cone photoreceptors’ responses. We
then apply a cone-like nonlinearity to the LMS pixels, which
helps the model deal with changes in brightness (Caywood,
Willmore, & Tolhurst, 2004). The formula we use is

I
′
C(z) = max

(
log(θ+1)− log(IC(z)+θ)

(log(θ+1)− log(θ))(θ−1)
+1,0

)
, (1)

where IC(z) is the image for LMS channel C at location z. θ

controls the normalization strength and θ = 0.01 in all of our
experiments.

Hierarchical ICA
The two central assumptions of hierarchical ICA are: 1) dif-
ferent brain regions share similar anatomical structures and
work under similar computational principles; 2) the input
should follow generalized Gaussian distribution in order to
let the statistical structure of the system be captured. In the
formulation of ICA, the observed data X is assumed to be
generated by underlying neural signal source S:

X = AS+ ε, (2)

where A is the ICA basis matrix and ε is the Gaussian noise
term.

In the first layer of ICA, in order to form a Gaussian-like
input, the stimulus X has to be whitened. In the visual sys-
tem, the input is whitened in retina and LGN before trans-
mission to V1. Here we use whitened PCA (WPCA) (Bell &

Sejnowski, 1997) to decorrelate the stimulus and normalize
the variance. This transformation can be written as:

WC = (Dc +δI)−
1
2 Φ

T
c , (3)

where Φc contains the eigenvectors of the covariance matrix
of the input stimulus, Dc is the diagonal eigenvalue matrix,
and I is the identity matrix. The regularization parameter δ is
set to be 0.01 in all experiments.

As the neural signal S is assumed to be sparse and indepen-
dent, the filter response, which is the input for next layer’s
ICA, is not Gaussian. As suggested by Shan et al. (2006)
and Kanan (2013a), we take the absolute value of the fil-
ter response and apply the cumulative distribution function
(CDF) of the exponential distribution to the response to effi-
ciently increase the discriminative power of ICA filters. We
then whiten the filter response again to form the input for the
second layer ICA.

The above process is repeated again for the second layer
ICA. This two-layer hierarchical structure can efficiently cap-
ture the statistical property of the input stimulus. As the fea-
tures are learned gradually from the images, this process can
simulate the formation of the early visual areas in our brain,
which is believed to develop and mature in our early life and
are shared components in the entire visual pathway.

Gnostic Fields
In our model, the unsupervised hierarchical ICA algorithm
simulates the early visual pathway. In order to model the
full object recognition pathway, supervision is needed as we
need information to distinguish between different object cat-
egories. We use Gnostic Fields to model the higher visual
pathway. Below is a brief review of the necessary informa-
tion to implement a gnostic field. Please see Kanan (2013b)
and Kanan (2014) for additional details.

The feature response vector for a given ICA layer (chan-
nel) c and location t is gc,t . We then augment this descriptor
by adding a vector that contains the feature’s spatial infor-
mation: lc,t = [xt ,yt ,x2

t ,y
2
t ,1]

T , where (xt ,yt) is the location
of gc,t normalized by the dimension of the input image. lc,t
is then also normalized, and the appended new vector ĝc,t is
whitened by Wc, which is learned by a collection of training
images of the task. This whitening step can also be served
as dimensionality reduction, and the whitened feature vectors
are made unit length. The final whitened and normalized fea-
ture vector fc,t is given by

fc,t =
Wcĝc,t

‖Wcĝc,t ‖
. (4)

In our model, a gnostic field for channel c is composed of
K gnostic sets, and each set represents one object category.
Each gnostic set contains a different number of gnostic units
mk,c, which is given by

m(k,c) = min(db(log(nk,c)+1)2e,nk,c), (5)



Figure 1: A high-level description of our model. Hierarchical ICA learns features of lower visual areas, and the visual infor-
mation projects to gnostic sets, with units in the target gnostic set responding strongest. The competitive normalization step
suppresses non-relevant set responses, and the information for each feature adds to the model’s beliefs. The linear classifier
makes the final prediction using information from all categories and layers.

where nk,c is the total number of feature vectors from category
k and channel c, and b regulates how many units learned in
the category (here b = 10 in all experiments). Since the num-
ber of feature vectors is directly proportional to the number
of examples, the number of gnostic units increases logarith-
mically in the number of training examples.

A gnostic set measures how similar the input feature vector
fc,1, ..., fc,T is to the previous examples (memory) of that cat-
egory. The output vector of the given category is generated
by:

ac,k,t = max j(vc,k, j · fc,t), (6)

where vc,k, j denotes the weight vector for each gnostic unit
j in category k, and is learned by spherical k-means unsu-
pervised clustering algorithm for unit length data (Dhillon &
Modha, 2001). The max operation is taken across all units in
the category, so we can treat it like a max pooling step, which
enables the gnostic set to activate strongly to any stimuli that
matches previous observations of that category.

The above ”max pooling” step is performed on every gnos-
tic set in the whole gnostic field. Subsequently, inhibitive
competition is used to suppress the response of least active
gnostic sets. To implement this on all K sets of channel c,
their outputs are first attenuated by half-way rectification, i.e.,

qc,k,t = max(ac,k,t −θc,t ,0), (7)

where θc,t =
1
K ∑k′ ac,k′,t . The non-zero responses are then

normalized using

βc,k,t = νc,t ·qc,k,t , (8)

where

νc,t =
∑k′ qc,k′,t

(K−1 +∑k′ q2
c,k′,t)

3/2 , (9)

which acts as a form of divisive normalization and has been
reported crucial in obtaining good object recognition accu-
racy in Kanan (2013b).

The next step is categorical evidence accumulation, which
simply sums the activation of βc,k,t across all time steps or
locations of the input:

ψc,k =
T

∑
t=1

βc,k,t , (10)

and the evidence accumulated from all category and channels
of the gnostic field forms the vector Ψ, which is made mean
zero and unit length.

Finally, a linear multi-category classifier is used to decode
the activity of all units and deal with confused categories. The
model’s predicted category is given by k̃ = argmaxkwk ·Ψ,
where wk is the weighting vector of category k. In our ex-
periments, the weights were learned with the LIBLINEAR
toolbox (Fan, Chang, Hsieh, Wang, & Lin, 2008) using multi-
class Support Vector Machine (SVM) formulation by Cram-
mer and Singer (Crammer & Singer, 2001), and the SVM cost
parameter was set to be 0.0001.

In our model, the gnostic field sits on top of the low-level
visual information processing produced by hierarchical ICA,
simulating the fact that the gnostic sets sit near top of a sen-
sory processing hierarchy (vision in our model), as hypoth-
esized in Konorski’s Gnostic Fields theory. In general, our
biological-inspired hierarchical model not only develops the
low-level visual features, but also possesses the capability of
learning categorical information necessary to perform well in
the high-level object recognition task. We show the results in
the next section.

Experiments
In this section, we will first analyze the ICA filters learned by
hierarchical ICA, and then show the object recognition ex-
periment results on computer vision datasets using the whole
model.



Figure 2: The 600 basis function learned from first layer ICA.
The learned Gabor-like filters share the three color opponency
characteristics (dark-light, yellow-blue, and red-green) of V1
neurons.

Feature Learning using Hierarchical ICA
Just like the early visual cortex matures by gradually per-
ceiving the surrounding environment, our model develops its
representation for unsupervised feature learning by using the
natural image dataset. We learned the ICA filters from 625
images from the Mcgill color image dataset (Olmos et al.,
2003). Each image was preprocessed using the method de-
scribed in the previous section. For each image, 300 patches
were randomly selected for 25×25 patch size. Prior to ICA,
all patches were whitened using WPCA and the dimensional-
ity was reduced to 600, which preserves about 98.86% of the
total variance. Next, we learned the filters using the Efficient
Fast ICA algorithm (Koldovsky, Tichavsky, & Oja, 2006).
The learned matrix A = [a1, ...,an]

T consists of ICA basis row
vector ai, and the learned filters are shown in Figure 2.

From Figure 2, we can see a population of filters that re-
spond to both chromatic and achromatic features. All features
are Gabor-like, and they share all three color opponency char-
acteristics of V1 neurons: dark-light, blue-yellow and red-
green (Caywood et al., 2004; Lee, Wachtler, & Sejnowski,
2002).

In the second layer of ICA, the filter responses were first
processed by a 2× 2 max pooling operation, which enables
the system to gain invariance for small translation. The patch
size at this layer is 7× 7, which make the visual feature
learned in this layer account for a larger receptive field. Next,
the filter responses were processed through the non-linearity
and the dimensionality was reduced to 300 by WPCA. To vi-
sualize this layer’s features, we obtained the row vector for
each ICA basis that can be reshaped to a 49× 600 matrix,
then ranked each column of the matrix based on the entropy
of the learned filters. Examples of the learned second layer
ICA filters are shown in Figure 3.

From Figure 3, we can see that the second layer filters pri-

Figure 3: Visualization of 6 randomly selected examples of
second-layer ICA filters. Each sub-figure shows a filter with
the dimensions of top 6× 6 entropy values. Dimension for
each patch is 7×7.

marily respond to edges with different frequencies and ori-
entations (a,c and f), and they show some degree of spatial
invariance (same filter pattern appears at different location of
the patch), like V1 complex cells. In addition, there are also
filters that correspond to contours (b and d), like the cells in
V2 do. In general, the second-layer ICA features are good
representation for higher layers of early visual cortex.

Object Recognition Using Gnostic Fields

Given the feature learned by Hierarchical ICA, we assessed
the performance of our object recognition system using two
major computer vision datasets: Caltech-101 (Li, Fergus, &
Perona, 2007) and Caltech-256 (Griffin, Holub, & Perona,
2007). Caltech-101 dataset contains 9146 images of 101 dis-
tinct object categories (and one background). Caltech-256
dataset is the successor of Caltech-101, and it contains a
broader number (256) of object categories and more varied
images, so the task is more difficult. All results below are re-
ported as the mean-class accuracy over five cross-validation
runs.

On Caltech-101 dataset, we analyzed the contribution of
each component in our model to the overall performance
of object recognition task. Specifically, we aim to explore
whether we will benefit from the hierarchical structure, and
how much performance will boost using the gnostic field. The
results are shown in Figure 4.

As can be seen from Figure 4, the recognition accuracy
benefits a lot from adding the gnostic field. This is because if
learning only involves unsupervised approach, ICA features
themselves are not very discriminative, just like we cannot
recognize objects relying only on V1 and V2. On the other
hand, the performance of using two-layer ICA is better than
using only one-layer ICA. This indicates that a hierarchical
system not only better models the early visual cortex, but also
generates the feature that is more discriminative than that a
single-layer model, although both are unsupervised. Consid-
ering the “deep” models, no matter unsupervised (Le, 2013)



Figure 4: Mean per-class accuracy on Caltech-101 dataset
using different model structures. Left: Recognition accuracy
as a function of number of training instances. Right: Com-
parison of using only one-layer ICA and two-layer ICA, with
different model structure: 1) ICA: gather the filter reponse for
each image, downsample to uniform size, vectorize and apply
SVM as classifier; 2) ICA+GF: Apply gnostic field on top of
ICA, use the naive argmax classifier; 3) ICA+GF+SVM: re-
place argmax by SVM.

or fully supervised (Krizhevsky, Sutskever, & Hinton, 2012),
they all benefit from the rich representation that the inter-
mediate layer could develop, which helps the model reach
very good object recognition performance. Finally, we can
observe that combining information of both ICA layers and
adding linear classifier generates the best performance, which
predicts that the categorizer in IT or PFC may need the in-
formation from all previous visual layers to make the more
reliable decision.

On Caltech-256 dataset, using the same settings on
Caltech-101 dataset, we measured the mean per-class accu-
racy of up to 50 test images using 15, 30, 45, 60 training
images, respectively. The results, as well as the comparison
with other methods, are shown in Figure 5.

From Figure 5, we can see that our model’s performance is
very competitive when compared with other methods from
computer vision. Our model achieves the recognition ac-
curacy of 51.8% when using 60 training images, and out-
performs all other methods mentioned in the figure. The
closest performance is achieved by Kanan (2013a), but they
used manually-designed CSIFT feature, as opposed to our
biologically-inspired learned ICA features. One thing to note
is that for deep convolutional neural network, using a pre-
trained network on big dataset usually yields a better perfor-
mance than training on Caltech-256 alone. This suggests that
our hierarchical model is more competent on learning from a
medium-sized dataset.

Discussion
In this paper, we proposed a biologically-inspired deep hier-
archical model for visual object recognition. We combined
unsupervised feature learning (hierarchical ICA) and a super-
vised learning algorithm (Gnostic Fields) to account for the
processing of early visual cortex and higher visual pathways,

Figure 5: Mean per-class accuracy of Caltech-256 dataset
as a function of number of training images. Griffin et al.
(2007) provides baseline results. Deep convolutional neural
networks do not perform well when trained solely on Caltech-
256, because they overfit without additional training on sig-
nificantly larger datasets, e.g., ImageNet (Zeiler & Fergus,
2014). Sohn et al. (2011) used features learned from a convo-
lutional RBM. Kanan (2013a) used CSIFT features and multi-
channel gnostic fields, and we achieved almost the same ac-
curacy. Chance is 0.0039.

respectively. We learned V1 and V2-like filters automatically
from natural images using a hierarchical ICA algorithm, that
simulates the development and maturation of early visual cor-
tex. With Gnostic fields, we achieve good performance on
two object recognition tasks. We suggest that the Gnostic
field models the categorization process in areas IT and PFC.
Overall, our biologically-inspired model provides an end-to-
end model of the human object recognition pathway.

Recently, deep convolutional neural networks (CNNs)
have emerged as a powerful machine learning tool for ob-
ject classification, particularly when millions of labeled im-
ages are available (Krizhevsky et al., 2012). A deep CNN has
multiple convolutional layers followed by multiple fully con-
nected layers. In our model, ICA layers are stacked twice, and
the Gnostic Fields serve as the classification layer. One no-
table difference between our model and deep networks is that
our model is composed of both unsupervised and supervised
learning, while state-of-the-art CNNs are fully supervised.

One question is whether more layers of ICA will help or
not. The learning method is highly computationally inten-
sive, so we were unable to add a third layer of ICA process-
ing. It is possible that more invariance would arise in a deeper
unsupervised network. The question is whether the loss of in-
formation through dropping the sign and spatial pooling will
lead to beneficial invariants being learned. Also, it is possi-
bly the case that deeper layers, which are closer to the tem-
poral pole, receive more category information, so that using
strictly unsupervised learning might not be appropriate. In



future work, we would like to apply this model to video to in-
vestigate whether it can learn useful spatiotemporal features
and achieve good performance in tracking and activity recog-
nition.
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