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Abstract

The development of fully autonomous seafaring vessels
has enormous implications to the world’s global supply
chain and militaries. To obey international marine traffic
regulations, these vessels must be equipped with machine
vision systems that can classify other ships nearby during
the day and night. In this paper, we address this prob-
lem by introducing VAIS, the world’s first publicly avail-
able dataset of paired visible and infrared ship imagery.
This dataset contains more than 1,000 paired RGB and in-
frared images among six ship categories - merchant, sailing,
passenger, medium, tug, and small - which are salient for
control and following maritime traffic regulations. We pro-
vide baseline results on this dataset using two off-the-shelf
algorithms: gnostic fields and deep convolutional neural
networks. Using these classifiers, we are able to achieve
87.4% mean per-class recognition accuracy during the day
and 61.0% at night.

1. Introduction
Creating Autonomous sea Surface Vessels (ASVs) that

can navigate the world’s waterways with very little human
intervention has enormous economic implications for the
global supply chain. The seaborne cargo shipping industry
moves over 9 billion tons of cargo per year, is worth $375
billion, and is responsible for 90 percent of world trade [18].
Crew costs are estimated to account for 44% of the operat-
ing expenses for seaborne cargo transport [2]. This expense
could be eliminated by ASV cargo ships, with the added
benefit of creating more room for cargo by eliminating life
support systems. Large tanker and cargo ASVs could also
operate at very slow speeds, known as super slow steaming,
that would be unacceptable to a crew. Slow steaming can

Figure 1. An example autonomous ship recognizing another ves-
sel observered by both its IR and visible cameras. To follow inter-
national maritime traffic regulations, ASVs need to classify other
ships during the day and in low-light conditions.

significantly increase fuel efficiency, which saves money
and reduces pollution. Beyond shipping, ASVs have mil-
itary applications such as surveillance.

One of the main obstacles to the development of ASVs
is that they need to obey the International Regulations for
Preventing Collisions at Sea 1972 (COLREGS). COLREGS
governs when a vessel has the right of way over other ves-
sels, and the rules depend on the kind of ship encountered.
For example, a motorized vessel must give way to sailing
vessels and vessels engaged in fishing, but they obey dif-
ferent rules when they encounter another motorized vessel.
Therefore, to follow COLREGS, it is necessary for an ASV
to categorize other vessels. An ASV may also need to clas-
sify ships for other reasons. For example, a military ASV
may need to categorize hostile military vessels to determine
how to best escape conflict. This recognition is best done
visually using camera systems. Radar can be used to direct
cameras where to look or analyze, but it alone is not suffi-
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cient to differentiate among COLREGS relevant categories.
Moreover, using radar would give away the vessel’s posi-
tion, which precludes its use in some military applications.
While some ships broadcast information that includes the
vessel’s type and location, many ships do not, especially
military and pleasure vessels.

To begin developing ASVs capable of obeying COL-
REGS, we created a dataset of synchronized and paired
visible (RGB) and long-wavelength infrared (LWIR) pho-
tographs of vessels on the water. LWIR cameras produce
images that measure thermal emissions in the environment,
so they are capable of seeing ships during the day and night.
Each pair of images was taken within the same full sec-
ond, in the same scene, on a rigid mount. The images were
collected over 9 days (10–15 hours per day) at 6 different
piers, in the form of image sequences. Hundreds of indi-
vidual ships were observed in this span, and we manually
annotated multiple images of each ship.

Beyond the typical recognition challenges caused by
changes in viewing angle, ships are especially difficult to
recognize due to huge variations in lighting conditions and
scale. Moreover, because the images were collected from
piers, most of the images do not have open water back-
grounds. Instead, almost all of them have clutter such as
land, buildings, and larger docked ships. For instance, a tall
crane on the land behind a cargo ship could be seen as a
mast, potentially causing the cargo ship to be misclassified
as a sailboat. Furthermore, the inherent structure of ships
introduces intra-class similarities that require discriminat-
ing features to identify.

2. Related Work
There are a few small datasets that have been created for

detecting and recognizing ships. In [24], the authors cre-
ated a 136-image dataset of ships captured with an infrared
camera. This dataset contained six different vessels, with
the goal being to recognize the individual ships and not to
generalize to ship categories. In [21], the authors created
a dataset of 2205 infrared open water images, with 749 of
them containing ships. Their goal was to determine whether
the image contained a ship, clutter, or an irrelevant object.
None of these datasets are publicly available.

Most other existing datasets of paired IR and visible im-
agery are of faces (e.g., [9, 8, 6, 13, 19, 25, 16]). These
datasets were created under tightly controlled conditions,
i.e., a static pose with no background clutter. The datasets
in [13] and [25] have a small amount of pose variation,
and [16] has more poses and lighting conditions, but still
no background clutter. All of these datasets were acquired
with cameras less than six meters from the subject’s face.
In contrast, the dataset we have constructed contains objects
imaged at distances ranging from about ten to several hun-
dred meters and beyond, resulting in enormous variation in

image resolution. Additionally, most of these datasets do
not contain multiple instances of an individual’s face un-
der differing conditions, making them ill-suited for testing
multi-class recognition algorithms.

Non-face paired datasets exist, e.g. [5, 10], for pedestri-
ans. The dataset provided in [5] consists of one or more
moving pedestrians in a small enclosed space. While this
dataset has more pose variations and occlusion, its IR im-
agery has little background clutter, and the cameras are still
within ten meters from the subjects. Imagery from [10] has
a longer distance from the subjects, but the subjects are not
individually identified, which makes the dataset more suit-
able for tracking than multi-class recognition.

The CVC Multimodal Stereo Datasets are some of the
only other non-human datasets to have paired IR and
visible-light images [1, 4, 3]. They contain images of roads,
buildings, and other urban areas. These datasets were cre-
ated for studying stereo matching and creating depth maps,
and they are not suitable for recognition.

3. The VAIS Dataset

3.1. Apparatus and Data Collection

Over nine days, we captured two terabytes of synchro-
nized image sequences using a horizontal stereo rig, which
is shown in Figure 2. The cameras are tightly mounted next
to each other and checked to ensure no interference. The
images captured were synchronized to retrieve one frame
per second from each camera, by matching the two clos-
est microsecond timestamps within each full second. The
RGB global shutter camera was a ISVI IC-C25, which cap-
tures 5,056×5,056 bayered pixel images (25 MP). For in-
frared, we used a state-of-the-art Sofradir-EC Atom 1024
camera that captures 1024×768 pixel images, one of the
highest resolution LWIR cameras available on the market.
The infrared camera has a spectral range of 8–12 microns
and uses uncooled ASi microbolometer infrared detector.
The complete apparatus was approximately $40,000 (US)
to purchase and assemble.

Prior to capturing data, we manually tuned the focus and
exposure of the RGB camera to account for environmen-
tal conditions and the time of day. The infrared camera
had no parameters that could be manually adjusted. When-
ever ships appeared, we aimed the rig and recorded until
the ships’ sizes become insignificant. During the day, we
used a monocular to find each ship’s name. At night, we
discovered ship names by using the MarineTraffic Android
application, which shows the locations of nearby ships that
are relaying Automatic Identification System (AIS) infor-
mation in real time. Typically only large commercial ves-
sels are equipped with AIS devices. The ship names are
later used for recovering unique instances.

After collecting the synchronized image pairs, the RGB



Figure 2. Our multi-modal stereo camera rig collecting data.

images were debayered using MATLAB’s “demosaic”
function and a 3 × 3 median filter was applied to the im-
age to remove pixel artifacts. No image resolution is lost in
the debayering process.

3.2. Annotations

For each unique ship in the dataset, we manually drew
bounding boxes in the images it appeared in, labeled the
ship type, and assigned it the name recorded using the
monocular or AIS data. In the rare case when we could not
identify the ship’s name, we assigned it a short description
based on its appearance. Because the images were captured
as image sequences at one frame per second, consecutive
frames were near-duplicates, which is undesirable to use
for classification tasks. To avoid having duplicates of the
same ship instance, we do not label every frame that a ship
appears in. Only three to five frames of each ship facing
each discrete 45-degree orientation were selected. The 45-
degree period comes from discretizing a 360-degree rota-
tion into 8 orientations, all of which are possible directions
that a ship could be facing. The discretization is done at the
annotator’s estimation. For most instances, only one orien-
tation was captured; for a few, up to 5 to 7 orientations. This
way, we avoid duplicates in the dataset, but still include as
many orientations of any given instance as possible. Ex-
ample bounding box images are shown in Table 1; example
pairs are shown in Figure 3.

Bounding boxes with areas smaller than a reasonable
threshold (200 pixels) were discarded from the dataset.
Since a given IR image has a much lower resolution than its
corresponding RGB image, smaller or farther objects may
only satisfy the threshold in RGB. After discarding bound-
ing boxes smaller than the threshold, a portion of paired
bounding box images were left with only the RGB image,
without its IR correspondence. We kept these singleton im-
ages in the dataset. All of the RGB images captured at
night were discarded, leaving all night images to be IR-
singletons.

3.3. Dataset Statistics

The dataset consists of 2865 images (1623 visible and
1242 IR), of which there are 1088 corresponding pairs.
There are a total of 154 nighttime IR images. The dataset
includes 264 uniquely named ships in 6 coarse-grained cat-
egories (or 15 fine-grained categories): merchant ships (26
cargo instances, 9 barge instances), sailing ships (41 small
sails up, 21 small sails down, 3 large sails down), medium
passenger ships (11 ferry, 4 tour boat), medium “other”
ships (8 fishing, 14 medium other), 19 tugboats, and small
boats (28 speedboat, 6 jetski, 25 smaller pleasure, 13 larger
pleasure, 36 small). The area of the visible bounding boxes
ranged from 644–6350890 pixels, with a mean of 181319
pixels and a median of 13064 pixels. The area of the IR
bounding boxes ranged from 594–296510 pixels, with a
mean of 12249 pixels and a median of 2272 pixels.

We partitioned the dataset into “official” train and test
splits. Because we are interested in generalization, we used
the names of the ships to ensure that each individual ship
was assigned to either the testing or training sets. The num-
ber of unique instances in the dataset are counted by ship
names as well. To create the train and test splits, we greed-
ily assigned all images from each named ship to either par-
tition, such that the number of images was roughly the same
in each partition for all categories. This resulted in 539 im-
age pairs and 334 singletons for training, and 549 image
pairs and 358 singletons for testing. All nighttime imagery
was assigned to testing, which enables us to measure how
well information transfers when object representations are
only learned from daytime imagery. This is important be-
cause ship traffic is much lower at night, so labeled data is
more difficult to gather. All of the categories are represented
in the nighttime data.

4. Classification Algorithms
We use two classification algorithms with VAIS: deep

convolutional neural networks (CNNs) and gnostic fields.

4.1. Deep Convolutional Neural Networks

Deep CNNs have recently come to dominate object
recognition research due to their excellent performance on
many challenging datasets harvested from the web, such
as ImageNet. Training a large neural network on a small
dataset, such as VAIS, would lead to overfitting. To over-
come this issue, we use a CNN that has been pre-trained
on ImageNet and use it to extract features from VAIS. This
works because after being trained on millions of images
from one thousand classes, the CNN learns features that are
discriminative for object recognition in general.

We used the MatConvNet CNN MATLAB toolbox [23]
with the 16-layer CNN from [20] to extract features from
images, which achieved excellent results on Image Net



Table 1. Five visible (rows 1–6) and IR (rows 7–12) samples from each of the main categories. Medium passenger, medium other, and
small boats often have similar appearances. In the infrared spectrum there is large variation in image quality, resolution, and heat ranges.
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Figure 3. Example VAIS image pairs, with the left being in the
visible and the right being infrared. The bottom pair of images are
taken in the dark. We have stretched the images to have the same
resolution to make them easier to view in this figure, although this
distorts their aspect ratio. The quality of the infrared images is
highly dependent on distance and differences in temperature.

ILSVRC-2012 dataset. We train a multi-class logistic re-
gression classifier on the output of the 15th weight layer,
with all negative values in these features set to zero (ReLU
nonlinearity). The final layer of the CNN is specific to rec-
ognizing the 1000 ILSVRC categories, so it is not used. The
CNN accepts 224×244 RGB images as input. For the VAIS
image crops, we resize each crop to this size using bicubic
interpolation. To handle the IR images, we simply dupli-
cate the single IR channel three times to create faux RGB
images. To train the multi-class logistic regression model,
we use the LIBLINEAR toolbox [12].

In preliminary experiments we tried fine-tuning the CNN
using backpropagation with VAIS’s training images. While
others have shown that this can improve results with other
datasets such as birds (e.g., [7]), we found that the model
performed worse even when regularization techniques, such
as drop-out, were used. This is likely because the CNN is
very large compared to VAIS.

4.2. Gnostic Fields

To complement our CNN-based approach, we also train
Gnostic Fields [15, 14] with SIFT features [17]. A Gnos-
tic Field is a brain-inspired algorithm for recognizing im-
ages, and is one of the best non-CNN-based classifiers.
While CNNs operate directly on pixels, Gnostic Fields need
to operate on an intermediate representation such as SIFT
descriptors. A Gnostic Field learns a representation for
each category, called a gnostic set, using spherical k-means.

When a gnostic field “sees” an image during run-time, each
gnostic set compares every descriptor to its learned repre-
sentation. The output of the gnostic sets is pushed through
a competitive normalization function, followed by accumu-
lating information across all of an image’s descriptors. The
final decision is made by a linear classifier, and we used
multi-class logistic regression because it provides probabil-
ities.

Our hypothesis is that gradient-based features, such as
SIFT, will be especially useful in the infrared domain. For
our infrared camera, the parameters at shooting time are au-
tomatically calibrated by its firmware and are not manually
adjustable. Image values are automatically rescaled by the
firmware from absolute temperatures to a range of [0, 255].
The camera automatically recalibrates itself a few times per
hour. As a result, the values across IR images taken at dif-
ferent times of the day, or between different calibrations, are
not directly comparable. Because of this variation in pixel
values across IR images, it makes sense to use gradient-
based features that are most sensitive to edge features. We
used the dense SIFT implementation in the VLFeat toolbox
[22]. For the RGB images, we first converted the images to
grayscale prior to extracting SIFT descriptors.

We set SIFT to use 11×11 spatial bins with a step size
of 5 pixels. Prior to extracting dense SIFT descriptors for
a ship, we cropped out its bounding box image, and then
resized it so that its shortest side is 60 pixels while the other
side is resized proportionally to preserve the aspect ratio of
the bounding box image. These settings produced about
50–700 128-dimensional feature vectors per image. We
then augmented the descriptors with a 5-dimensional vec-
tor containing spatial location information. This was done
by appending a vector ˆ̀c,t =

`c,t
||`c,t|| to the SIFT descriptor,

where `c,t =
[
xt, yt, x

2
t , y

2
t , 1

]T
and (xt, yt) is the spatial

location of grid point gc,t normalized by the image’s di-
mensions (size) to be between -1 and 1. This yields n 133-
dimensional feature vectors for a bounding box image, with
n dependent on the size of the bounding box. Subsequently,
we used whitened PCA to reduce the dimensionality to 80,
which is the same setting used in previous gnostic field re-
search (e.g., [14]).

5. Experiments

All methods used the same fixed training and test sets.
We assess Gnostic Fields and CNNs on the night and day
data. We also combine the probabilistic outputs of classi-
fiers operating on the IR and visible imagery by averaging
them to see if the IR information can enhance recognition
during the day. Likewise, we also average the probabilis-
tic outputs of the Gnostic Field and CNN models (denoted
Gnostic Field + CNN) to see if the algorithms complement
each other. To do this, we use a weighted average with 0.8



Table 2. Daytime mean per-class accuracy on VAIS.
IR Visible IR + Visible

Gnostic Field 58.7% 82.4% 82.4%
CNN 54.0% 81.9% 82.1%
Gnostic Field + CNN 56.8% 81.0% 87.4%

Figure 4. Daytime confusion matrix for the best performing classi-
fication model. All categories except for medium-other are above
85% accuracy. Medium-other achieves only 61.6% because it is
often confused with passenger and small ships. Cargo and sailing
ships are best discriminated with both over 98% accuracy.

applied to the CNN’s output and 0.2 to the Gnostic Field’s.
Daytime and nighttime images were tested separately to

compare performance. Both daytime and nighttime were
trained on the same data; the only difference is in the test
data.

Daytime mean-per-class accuracy, i.e. the mean of the
diagonal of the confusion matrix, for each method is shown
in Table 2. As expected, IR performs worse overall com-
pared to visible. This is likely due to the IR camera hav-
ing significantly lower resolution than the visible camera.
The gnostic field and CNN classifiers perform very simi-
larly on the daytime data. Averaging IR with the visible
outputs provides little improvement in accuracy for a partic-
ular classifier; however, the best performing approach was
when all four models were combined (gnostic field on IR,
gnostic field on visible, CNN on IR, and CNN on visible),
which yielded 87.4% accuracy. The confusion matrix for
this model is shown in Figure 4.

Nighttime accuracy for the IR camera is shown in Table
3. The confusion matrix for the best performing method is
shown in Figure 5. Accuracy is similar to the daytime IR
results.

6. Discussion
We described the VAIS dataset and took important first

steps toward making ASVs that can recognize ships and
comply with COLREGS a reality. Our results indicate that

Table 3. Nighttime mean per-class accuracy on VAIS.
IR

Gnostic Field 51.9%
CNN 59.9%
Gnostic Field + CNN 61.0%

Figure 5. Nighttime confusion matrix for the best performing clas-
sification model. As with the daytime results, medium-other is the
most confused category and accuracy is very low (14.3%). The
most accurate categories are sailing (87.5%) and small (93.8%)
ships.

with a larger dataset and improved algorithms, ship recogni-
tion during the day is within reach with current technology,
assuming that the ships can be localized. Our IR results
suggest that ships can also be recognized moderately well
at night, but it is likely that the camera technology will need
to be improved before the results are comparable to daytime
recognition.

We were able to annotate 16 fine-grained categories in
VAIS, but we did not evaluate them here. This was done
for two reasons. First, these fine-grained distinctions are
not relevant for COLREGs or control. Second, several cat-
egories, e.g. jetski, were severely underrepresented due to
containing too few pixels to be annotated.

Even after nine days of gathering data, VAIS is still rel-
atively small because we were only able to capture ships
that were fortuitously traveling nearby. One way to improve
this situation is to use transfer learning by augmenting our
training data with ship imagery from the web. ImageNet
[11] could be used for this purpose, and it already contains
labeled images of ships at a fine grain. However, there are
many errors in its ship annotations and the majority of im-
ages do not have bounding boxes. Moreover, the domain
shift (difference) between ImageNet’s web images and our
dataset gathered “in the wild” is huge in terms of image
quality because many images in VAIS are low resolution
and exhibit glare or other artifacts. Images from the web of-
ten suffer from photographer bias, in that images with more



aesthetic appeal tend to be uploaded. One of our next steps
is to try to annotate ImageNet with accurate bounding boxes
and remove erroneous images, in order to use it for transfer
learning with VAIS.

Ultimately, to make ASVs a reality it will be necessary
to collect and annotate images from cameras mounted on
moving ships. This poses many difficulties, since a ship’s
“bouncing” ego-motion means that images captured in this
way will have properties somewhat different from VAIS.
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