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Abstract

When tracking small moving objects, primates use
smooth pursuit eye movements to keep a target in the cen-
ter of the field of view. In this paper, we propose the
Smooth Pursuit tracking algorithm, which uses three kinds
of saliency maps to perform online target tracking: appear-
ance, location, and motion. In addition to tracking single
targets, our method can track multiple targets with little ad-
ditional overhead. The appearance saliency map uses deep
convolutional neural network features along with gnostic
fields, a brain-inspired model for object recognition. The
location saliency map predicts where the object will move
next. Finally, the motion saliency map indicates which ob-
Jjects are moving in the scene. We combine all three saliency
maps into a smooth pursuit map, which is used to generate
bounding boxes for tracked objects. We evaluate our algo-
rithm and others from the literature on a vehicle tracking
task. Our approach achieves the best overall performance,
including being the only method we tested capable of han-
dling long-term occlusions.

1. Introduction

When tracking small moving objects, primates use two
types of eye movements to keep the object foveated: smooth
pursuit and saccades. Saccades are ballistic eye movements
in which objects in the retinal periphery are brought to
the center of the field of view. Smooth pursuit eye move-
ments, in contrast, are continuous eye movements that at-
tempt to counteract the object’s movement to keep it con-
tinually in the center of the field of view. While saccades
can be elicited in a wide variety of situations, smooth pur-
suit eye movements are only possible when an object is in
motion [29]. Motivated by the neural circuits that under-
lie smooth pursuit, we created the Smooth Pursuit Tracking
(SPT) algorithm. In primates, smooth pursuit is disabled
by complete occlusions because the object is no longer seen
moving. To cope with this, we introduce a crude fixation-
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Figure 1. Inspired by how the primate brain tracks objects, in this
paper we develop a new algorithm for online tracking, which com-
bines three kinds of saliency maps: appearance, motion, and loca-
tion. The algorithm can track multiple objects simultaneously with
little additional overhead. We evaluate the algorithm on its ability
to track ground vehicles in aerial video footage.

like model when SPT is not confident in the target’s po-
sition. We also show that SPT can do online tracking of
multiple targets, which requires little additional overhead
compared to single-target tracking.

Saliency maps are topologically organized maps that rep-
resent the salient information in a visual scene [17]. The
brains of humans and other animals are thought to contain
saliency maps that allow them to determine what things
in the visual field deserve attention [16, 17, 34]. Algo-
rithms for saliency maps have been widely used to model
human attention and to predict eye movements. There are
two main kinds of saliency maps: bottom-up (or stimulus
driven) and top-down (or task-driven). For static images,
bottom-up maps assign higher saliency to rare features in
the image, where the definition of rarity differs per algo-
rithm. For videos, either feature rarity or motion are as-
signed high saliency. Bottom-up maps have been used to
predict eye movements during free-viewing in static scenes
and videos, when human subjects are not given a specific
task [8, 45, 24]. Top-down maps assign high saliency to
image regions that are likely relevant to the current task.



When trying to look for particular targets, the process is of-
ten modeled by looking for locations where the object is
likely to be and regions that resemble the target’s appear-
ance [5, 21, 35, 42]. Here, we use one kind of bottom-up
saliency map, object motion, and two kinds of top-down
saliency, target appearance and future target location.

We evaluate our tracking algorithm on its ability to track
moving vehicles in footage acquired by an aerial platform.
This kind of footage is a great test for our algorithm, since
smooth-pursuit in primates is used for tracking small mov-
ing objects. Moreover, tracking in aerial footage is be-
coming increasingly important. Unmanned aerial vehicles
(UAVs) continue to become more popular every year, and
they are now being used in film production, mining, con-
struction, real estate, news media, and agriculture. More-
over, the world’s security agencies are gathering enormous
amounts of video data in which they are looking for events
of interest, such as suspicious vehicles. When these vehi-
cles of interest are found, in many cases they would like
a UAV to follow the vehicle over time, which requires on-
line visual tracking. Videos of these events can then be ana-
lyzed by a human analyst. Tracking ground vehicles in UAV
video streams is especially difficult because we usually have
a relatively small number of pixels on the target compared
to other tracking problems, and targets can change drasti-
cally in appearance due to changes in lighting conditions,
UAV altitude, and perspective.

2. Background
2.1. The Neural Circuits for Smooth Pursuit

Many regions of the brain are involved in smooth pur-
suit. Among the most important are the middle temporal
visual area (MT or V5) [15, 32], medial superior temporal
area (MST) [15], lateral intraparietal sulcus (LIP) [23], and
frontal eye fields (FEF) [23]. MT receives information from
earlier visual areas (V1 and V2), and nearly every cell re-
sponds to visual motion in a direction sensitive manner [15].
Pursuit cells in MT stop firing when blinking [28]. MST re-
ceives input directly from MT. During smooth pursuit, MST
neurons respond to retinal image motion as well as head and
eye movements [15], and many neurons continue to be ac-
tive during blinking [28]. We interpret these brain regions
as computing two kinds of saliency maps: MT is a map for
target motion, and MST is a map that predicts the tracked
object’s future location.

LIP is a topologically organized brain region that has
been implicated as one of the most important saliency maps
in the brain for visual attention [11]. LIP neurons indicate
which regions of the visual field are relevant to the current
task. LIP is involved in both smooth pursuit and saccades,
and it receives projections from many visual areas involved
in feature extraction and object recognition, including V2,

V4, and inferotemporal cortex (IT) [9]. Stimulation of LIP
neurons can evoke smooth-pursuit [23], but little is known
of its exact role in smooth pursuit. However, given its role
in task-driven attention and because it receives information
from V2, V4, and IT, we hypothesize that it is the source of
the object appearance saliency map during tracking.

FEF is a topologically organized brain region that pro-
duces the motor commands responsible for eye movements,
including smooth pursuit. It is often considered the lo-
cation of the brain’s final saliency map for eye move-
ments [16, 34]. It receives information from many brain
regions, including MT, MST, and LIP [33, 30]. V2, V4,
and IT are all involved extracting visual features and un-
derstanding object appearance in an invariant manner, with
IT being considered the location where high-level invariant
object recognition occurs in the brain [4]. When engaged in
smooth pursuit, we consider these regions as generating a
map for the target object’s appearance.

While we employ some of the same mechanisms as the
neural circuits that underlie the primate smooth pursuit sys-
tem, there are important distinctions between the biological
system and our model. Primates physically move their eyes
during smooth pursuit to keep the target centered on the
fovea, the region of the retina with the highest resolution,
but we cannot do this with pre-recorded videos. However,
videos are of uniform resolution, so foveating regions is
simply simulated by the predicted bounding box. While the
brain’s saliency maps for smooth pursuit control eye move-
ments, for our model they are interpreted as controlling the
target’s predicted location. This is similar to the distinction
between models of overt and covert attention.

2.2. Comparison Algorithms for Online Tracking

There have been a large number of tracking algorithms
developed (for a review, see [41] and [43]). We compare
our method to: L1 tracker [27], CVT [3], ASLA [18],
MIL [2], KCF [13], OAB [12], and SPOT [46]. There were
no publicly available results using our evaluation metrics
on the dataset we evaluated on, so we ran code for each
of these algorithms ourselves. We briefly summarize how
each of these online trackers works. With the exception of
SPOT [46], each of these trackers is only designed to follow
one object at a time.

The L1 tracker [27] poses the visual tracking problem
in a particle filter framework. It tracks objects by finding a
sparse approximation of the target in a template subspace,
where the sparsity is achieved by solving an L1-regularized
least squares problem. The L1-tracker incorporates a mech-
anism to handle occlusions. ASLA [18] uses a set of target
templates to perform tracking. The ground-truth target is di-
vided into a set of overlapping local image patches, which
are then sampled to build a sparse dictionary representing
the target’s appearance. The target is then detected in sub-



sequent frames using a dynamical Bayesian framework with
an alignment pooling operator. MIL tracker [2] uses an on-
line variant of boosting that incorporates Multiple Instance
Learning. Instead of using a single positive patch to up-
date its classifier, it uses a collection of positive patches.
KCF Tracker [13] uses a dense sampling strategy around
the given bounding box to produce a circulant matrix struc-
ture when kernels are applied. The algorithm uses a regular-
ized least square classifier by labeling the training samples
with continuous Gaussian values. Using the circulant struc-
ture of the matrix, the tracker uses the filter theorem to per-
form tracking in the frequency domain with high frame-rate.
CVT [3] integrates the color attribute model of [37] into the
KCF [13]. CVT constructs a multi-dimensional color at-
tribute vector by assigning observations in the RGB color
space to linguistic color labels. OAB tracker [12] uses an
online version of AdaBoost to update a feature ensemble
used for tracking the target. OAB uses the initial bound-
ing box and the surrounding background as positive and
negative examples. The weak classifiers use hand-crafted
features. While most multiple-target tracking algorithms
are used offline, SPOT [46] is one of the few online multi-
target tracking algorithms. Using a structured SVM trained
on features from the first frame, it jointly learns object ap-
pearance and structural constraints among the targets. The
published implementation of SPOT requires multiple tar-
gets to be tracked, so it is only evaluated on our multi-target
tracking video.

2.3. Related Deep ConvNet and Saliency Trackers

In computer vision, there is currently a great interest in
deep convolutional neural networks (ConvNets) due to their
efficacy at object recognition, object detection, semantic
segmentation, and other areas. It is also possible to sim-
ply use ConvNets as a kind of feature representation, treat-
ing the output of each convolutional layer as a collection of
topologically organized and highly discriminative descrip-
tors. We adopted this approach.

While we use ConvNets to extract image descriptors that
are fed into gnostic fields, a few recent papers have used
ConvNets or other deep learning algorithms to track objects
in videos. In [40], the authors used a stacked denoising
auto-encoder for tracking. During tracking, the algorithm
draws particles as candidate locations from the new frame.
The last layer of the auto-encoder was used to represent the
features of the target and background, and a logistic regres-
sion classifier was trained to detect the target. Unlike our
approach, they did not use motion information and their
features were not trained to be discriminative for recogniz-
ing objects. In closely related work, [14] performed target
tracking by creating a target specific saliency map found by
back-propagating SVM weights. The map was then used
to generate an appearance model distribution in a Bayesian

filtering framework. In [25], the authors proposed the dis-
criminant saliency model. They first filter an image with
DCT filters, and then each filter response is used to gener-
ate a saliency map. The target is detected at the location of
the maximum value in the sum of the saliency maps. Un-
like us, the authors did not use motion or location saliency.
Instead of DCT features, we used ConvNet features, along
with Gnostic Fields to estimate an appearance saliency map.

In [44], the authors developed a bottom-up saliency
tracker that tracked any salient target in the scene, which
was done in an entirely unsupervised manner. This is in
contrast to the typical online tracking problem, in which a
particular target is to be followed throughout a video. The
algorithm uses color features and sparse optical flow to gen-
erate a bottom-up saliency map. The salient region in the
frame is tracked using a particle filter.

In [24], the authors used a ConvNet that is trained on-
line to discriminate and track a target from the surrounding
background. The algorithm proposes a truncated structural
loss function to avoid the constraint of requiring large train-
ing data. In subsequent frames, the target is detected by
classifying candidates using sliding window approach. The
method did not use motion or location saliency. In [7], the
authors used a ConvNet to track humans in videos. They
trained the ConvNet to learn both spatial and temporal fea-
tures together.

3. The Smooth Pursuit Tracking Algorithm

Our SPT algorithm multiplicatively combines appear-
ance, location, and motion saliency maps to generate a
smooth pursuit map. We assume that each of the sub-
saliency maps contains only a few salient regions, so the
multiplicative combination of them should produce a sparse
map with the most salient region containing the target. For-
mally, to track a target k, SPT defines the smooth pursuit
saliency map s as

s(k,t,z) = a(k,t,2) E(k,t,z)m(t,z), €9

where z is the (x,y) Cartesian pixel location, ¢ represents
the frame number, a is a function that computes the appear-
ance saliency map, ¢ is a function that computes the location
saliency map, and m is a function that computes the motion
saliency map. This equation is depicted in Fig. 1.

We explain how each of these saliency maps are com-
puted in the following subsections, and example saliency
maps are shown in Fig. 2. As explained in Section 3.5, our
algorithm uses an alternative technique when its confidence
is low, enabling it to handle occlusions.

3.1. Appearance Saliency

Top-down saliency maps use information about the algo-
rithm’s goal to generate the saliency map. When a person
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Figure 2. The appearance, location, motion, and smooth pursuit saliency maps for three frames of a video, where we are overlaying saliency
maps for each of the three vehicle targets using different colors (blue, green, and red) along with the current bounding box prediction.

is trying to look for a particular kind of object, top-down
saliency maps driven by object appearance are far more pre-
dictive of their eye movements than bottom-up models [21].
These saliency maps have high values in regions that corre-
spond to areas of the image that resemble the target.

Here, we created a new appearance-based saliency algo-
rithm using an online variant of gnostic fields. The neu-
roscientist Jerzy Konorski proposed gnostic fields in 1967
as a theoretical model for how the brain performs object
recognition [22]. A gnostic field consists of competing
gnostic sets, with each set containing a population of gnos-
tic neurons that act as template matchers for a particular
class. More recently, gnostic fields were turned into an al-
gorithm and achieved good results on various object recog-
nition benchmarks [19, 20]. Gnostic fields generally op-
erate on dense topologically organized image descriptors,
and each gnostic set compares each descriptor to the learned
templates for the class. We have adapted this object recog-
nition model to serve as our appearance saliency map for
each tracked target.

We use one gnostic field for each feature channel c (i.e.,
feature type), which can serve as a classifier for all K tar-
gets of interest. A gnostic field first applies a whitening
matrix W, to the features g. ; ., which decorrelates and re-
duces the dimensionality of the features, followed by mak-
ing these features unit length, i.e.,

A M )
Y || chc,t,z H
For each channel, W, is computed using whitened princi-
pal components analysis applied to the descriptors extracted
in the first video frame, and only the first 100 principal com-
ponents are retained.

To track K objects, we create a gnostic field with K + 1

gnostic sets, with one set per object plus one set represent-

ing the background. The initial activity of each gnostic set
is given by the most active unit in the set, i.e.,

Qe k,t,z = m?x({’c,hj . fc,t7z)7 (3)

where each V. ; represents gnostic unit j for set &k that

has been normalized to unit length, ie., V.1 ; = Hzc’i’?”.
c,R,7

Subsequently, we competitively normalize the responses of

the gnostic sets,

ac,t,zao) ) (4)

qe,k,t,> = IMax (ac,k,t,z -

_ 1
where Ot . = 7 > i Qe k' t,z- The non-zero responses
are then normalized using

Zk/ qe,k’ t,z
Beykt,z = deyk,t, 5 ) (5)
c z c, z (T‘ i Zk’ qg,k’,t,z)S/z

where r = .01 regularizes the strength of the normalization.
This competitive normalization step was found to be crucial
for ensuring good object recognition accuracy in [19]. We
then bilinearly interpolate 3. 1+ . to align it with and make
it the same size as the input frame at time ¢, which yields
« k.t~ To create the final appearance map for the target,
these are summed across all channels and then the map is
normalized across spatial locations to sum to one, i.e.,

a (k,t, Z) - Zc ﬁc,k,t,z (6)

Zz Zc ﬁz/:,k,t,z .

Earlier papers on gnostic fields were trained offline and
used spherical k-means to learn the gnostic units. However,
that approach is not suitable for online tracking, so we cre-
ated an online version of spherical k-means, in which the
number of units is allowed to increase. To incorporate a de-
scriptor £, ;, into the gnostic set corresponding to channel ¢




and tracked object k, we do the following. If the gnostic set
contains one or more units, then the descriptor is compared
to all of the set’s units to find the most active unit j’, i.e.,

j/ = arg max{’c,k,j : fc,h- @)
J

If Ve, jo - fe, > p, where p acts as a similarity threshold,
or if ¥ = A, where 9. j, represents the current number
of units in the gnostic set and \ represents the maximum
number of units allowed, then we update unit j’ using

Ve, = ofen + (1 —a)verj, ®)

where « controls the balance between the old and new rep-
resentations. This update rule is based on the exponential
moving average, so it could potentially forget object appear-
ances in the distant past. Otherwise, the descriptor is simply
copied into the set as an additional unit. In our experiments,
we set A = 1000, a = 0.5, p = 0.98 for the tracked targets,
and p = 0.9 for the background set. No attempt was made
to tune these parameter values.

In the first frame, the gnostic sets for target k are ini-
tialized using all of the descriptors within the ground truth
bounding box. All descriptors not assigned to targets are
used to initialize the background gnostic set. In subsequent
frames, we run a Harris corner detector and we only up-
date the target gnostic sets with descriptors at the corners
found within the predicted target bounding boxes, and we
use descriptors that are not located within any predicted tar-
get boxes to update the background gnostic set.

For image descriptors, we used multiple layers of a Con-
vNet that was pre-trained on ImageNet. Specifically, we
used the 16-layer ConvNet known as VGG16 [31], which
has 13 convolutional layers and 3 fully-connected layers.
The fully-connected layers were not used. We convolved
the network with each video frame, and used the output of
convolutional layers 4, 7, 10, and 13 as distinct channels
that were input to four gnostic fields. Respectively, these
descriptors were 128—, 256—, 512—, and 512—-dimensional,
and for 640 x 480 images (as in our dataset), each respec-
tive layer produced 16384, 4096, 1024, and 256 topologi-
cally organized descriptors. For the descriptors, all negative
values were set to zero prior to feeding them to the gnostic
fields (i.e., applying the rectified linear unit non-linearity).
We used the MatConvNet toolbox [38] to run the network.

3.2. Location Saliency

For each tracked object k£ in a video, we estimate the
location saliency map £ (k, t, z) using the Kalman filter pre-
diction stage. The Kalman filter is applied to generate the
location map, and it is not used as the main tracking frame-
work. The filter predicts the future location of the target
k using a constant velocity motion model, based on online
updates of its past locations. In the first frame, the center

location of the target’s bounding box is used to initialize the
Kalman filter. In subsequent frames, if the confidence in
the target’s position is sufficiently high (see Sec. 3.5), the
Kalman filter is updated using the new location, and then
the prediction stage is used again to estimate the location
in the next frame. However, if the confidence is low, e.g.,
due to an occlusion, Kalman filter will not be updated and
the prediction stage of the last updated model will be used.
It should be noted that We only used the Kalman filter to
predict the target’s central location and not the size of the
target. Instead, we used a spherical 2-dimensional Gaussian
centered at that location with a fixed variance of o2 = 300,
which was chosen in preliminary experiments.

3.3. Motion Saliency

One of the key characteristics of smooth pursuit is that it
can only be used to track moving objects. We capture ob-
ject movement in frame ¢ using a motion (or spatiotempo-
ral) saliency map m (t, z), which uses a simple background
subtraction algorithm. More sophisticated spatiotemporal
saliency map algorithms are possible (e.g., [26]), but we
have chosen to adopt this simple approach because of its
speed and ability to compensate for camera motion.

The motion saliency map is created by performing back-
ground subtraction using an average model of the previous
n frames as the background, i.e.,

1 n
m' (t,z) = |I . — - Zl Il )
iz

where [y . is the current frame and I _ is a version of the
frame at time 7 that has been aligned to the frame at time ¢.
This representation is normalized by subtracting the mean
across locations and doing half-wave rectification, i.e.,

m (t,z) = max (m’ (t,2) — 0 (t,2),0) + ¢, (10)

where = L3 m/(t,2') and € = .01 to ensure that if
the tracked objects have stopped moving that the smooth
pursuit map will not be null. Subsequently, m (¢, z) is nor-
malized to sum to one. Aligning the previous frames to
the current frame is necessary to counteract camera motion.
We did this alignment using the MATLAB Image Align-
ment Toolbox [6]. We configured the toolbox to find cor-
responding points between images using SURF descriptors
and a RANSAC fitting was used to estimate the transforma-
tion between the correspondences. In our experiments, we
set n = 3 in general, but if less than n frames were avail-
able then all of the frames were used. The versions of the
images used in the background subtraction are in an oppo-
nent color-space [10], similar to that used by the retina and
lateral geniculate nucleus in primates.



3.4. Getting Boxes from the Smooth Pursuit Map

To generate bounding boxes from the smooth pur-
suit map for a target k£ in frame ¢, we find the loca-
tion of the largest value in the saliency map, i.e., 2’ =
argmax, s (k,t,z). Then we threshold the map to set all
values less than s (k,z’,t) to zero and setting all other
points to one. Finally, we find the connected components
about point z’ and use that to generate the predicted bound-
ing box By, ¢.

3.5. Handling Occlusion

In primates, smooth pursuit only works when an object
being tracked is moving and visible, meaning other mecha-
nisms need to be used to recover a track that has been lost
due to occlusion. Primates use saccades to recover the ob-
ject’s location in this situation. Here, we use an object de-
tection algorithm to try to do the same.

To determine if a track £ has been lost in frame ¢ we use
the appearance saliency map prior to its final normalization
by taking the mean around By, ;, which is the bounding box
predicted by the smooth pursuit map, i.e.,

ZzEBkﬁt a (k7 t, z)

B = 11
qsk,t ( k,t) |Bk7t| max, a (k7 t, Z/) ) ( )

where | By, ;| contains the number of points in the bounding
box. The greater ¢y, ¢ is for By ;, the more confident the
system that the box contains the target. If ¢, ; (B,) < 0.4
then the system may not use By, ;. Instead, we run the Selec-
tive Search algorithm [36] on the appearance and temporal
saliency maps to generate bounding box hypotheses. Selec-
tive Search hierarchically segments the maps and generates
a bounding box hypotheses. We prune the box hypothe-
ses to constrain their centers to be within 10p pixels, where
p is the number of frames in which confidence was low,
i.e., ¢+ < 0.4 has been true. This allows the algorithm to
search for boxes farther away as the length of time the track
has been lost increases. For each box hypothesis we eval-
uate equation 11. Let the box hypothesis with the greatest
confidence be B;, ;. If the confidence in B} , is greater than
0.4, then we use it instead of By ;.

4. Results

Here we present the results of our algorithm on the
VIVID dataset. VIVID is a large video dataset captured
by an aerial platform [1]. Each video contains multiple ve-
hicles moving on dirt or paved roads. Many videos have oc-
clusions, such as tree canopy, and others have identical ve-
hicles moving in formation, making it especially challeng-
ing for methods that rely on appearance alone to succeed
because the tracks can easily be confused. Only five RGB
VIVID videos have been annotated by others, and these an-
notations only have ground-truth for a single vehicle in each

Figure 3. Frames from three single-target tracking videos with
predicted tracks for each algorithm. Each row is for EgtestO1,
Egtest03, and Egtest05 respectively, while the columns represent
the selected frames. The bounding boxes are colored as follows:
ground-truth, CVT, ASLA, [.1, MIL, KCF, , and Ours.

video. We first show results on these single-vehicle track-
ing results. To study our approach’s ability to track multi-
ple vehicles simultaneously, we also hand-annotated three
vehicles in a single VIVID video. We quantitatively com-
pare our algorithm to the trackers mentioned in Section 2.2.
All algorithms, including our own, had all of their meta-
parameters fixed across all videos. All of our qualitative
results are presented in videos'.

We measure the performance of the algorithms using re-
cent standard metrics for online tracking [41]: precision
plots, success plots, and center location error (CLE) plots.
For success plots, the Area Under the Curve (AUC) is re-
ported in the figure, and we also report the precision at a
threshold of 20 in precision plots. The mean CLE for the
whole video per tracker is also reported.

4.1. Tracking Individual Objects

Fig. 3 shows four example frames for three of the five
videos in each row, EgtestO1, Egtest03, and Egtest05, as
well as predicted bounding boxes for each method. See
supplementary materials for additional figures. For video
EgtestO1, all of the trackers were able to follow the target
for the first 400 frames. By frame 420, other trackers start
to drift, and only our method, ASLA and OAB continued
tracking the target throughout the video. In contrast, for
video Egtest03 (second row), ASLA performs poorly, while
ours and OAB track well. The third row, video Egtest05,
contains strong changes in illumination and has long oc-
clusions, but our method tracked well throughout the video
compared to all trackers. Table 1 shows the mean CLE for
each video, as well as the average CLE across videos. Over-
all, our method performed significantly better than the other
algorithms, and our overall error was the lowest by a margin

'A list of links can be found in the supplementary materials, and a
YouTube playlist with these videos can be found here: https://goo.
gl/7XVR9v
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Figure 5. Precision and success plots for the single-target tracking
results, averaged across all five videos.

of 117 pixels. While our method did not score the best on
two of the videos, the differences from the best and second
best methods were minor (see Table 1).

Fig. 4 shows CLE for each frame in the individual
videos. In video Egtest03, our method outperformed most
of the trackers by a large margin, scoring the mean CLE of
only 4.9 pixels. In comparison, all other trackers, except
for OAB, had a mean CLE of over 60 pixels. Our method
outperformed most of the others by a margin of over 100
pixels for Egtest04, except for MIL. In Egtest05, our al-
gorithm outperforms all the trackers by at least 150 pixels.
Interestingly, some of the algorithms produced similar er-
ror patterns. For example, in Egtest04 video, ASLA, OAB
and L1 have similar error curves, which hints that neither
algorithm can handle the series of occlusions presented in
the video. Also, in Egtest05, which contains changes in
illumination and long occlusions, ASLA, KCF and CVT
have similar error curves with only a height offset. Fig. 5
shows the precision and success plots averaged across all
five videos. Our method performs better than the compari-
son algorithms by a large margin. For precision, our method
scored 81% at a threshold of 20 pixels, and the second clos-
est is the OAB tracker with 52%. This indicates that our
method’s predicted bounding boxes were consistently close
to the ground truth bounding box centers. Similarly, in the
success plot, our method achieves very good results, with
an AUC of 0.39. OAB again was the second best method,
achieving an AUC of 0.29.

4.2. Simultaneously Tracking Multiple Objects

We used VATIC [39] to carefully annotate three vehicles
in a challenging VIVID video that contains numerous long
duration occlusions. While our method and SPOT [46] can
track multiple objects simultaneously, for the other meth-
ods we simply re-run their algorithm three times, i.e., once
per vehicle. Our algorithm did especially well on the multi-
target tracking video compared to the other methods®. As
shown in Fig. 6, the mean CLE across the three vehicles was
13 pixels for our method, while the second best was 179 pix-
els for SPOT. Fig. 7 shows the precision and success plots
for each of the trackers averaged across the three vehicles,
and our method performed very well by these metrics.

4.3. Appearance vs. Location vs. Motion

How important is each component of SPT? To
study this, we created all sensible sub-models of SPT:
) a(k,t,z)l(k,t,z)m(t,2), 2) a(k,t,z)l(k,t,z), 3)
a(k,t,z)m(t,z), 4) £(k,t,z)m(t,z), and 5) a (k,t,2).
We evaluated each of these models on all of the single-target
videos. Results with center location error are shown in Ta-
ble 2. Overall, the entire model works better than any of the
sub-models. Location and motion alone is the second-best
model, and the three top models all use motion, which is
consistent with its central role in our model of smooth pur-
suit and in the primate visual system. Additional results are
shown in Supplementary Materials.

4.4. Timing Benchmarks

A comparison of the speed for all of the methods is
shown in Table 3. We did our timing benchmarks on a desk-
top with an Intel Core i7-5820K CPU and an NVIDIA Titan
X, which was used to speed up ConvNet feature computa-
tion. SPT is written in MATLAB, and it is not optimized for
speed. While our implementation is slower than most of the
methods, it was faster than OAB. We further analyzed how
much time each component of SPT requires. Feature com-
putation took 0.07s, computing the motion map took 0.16s,
computing the appearance map took 0.08s, and computing
the location map took 0.01s. One of the most expensive

2A YouTube multi-target video showing the results for all trackers can
be found here: https://goo.gl/ptIoHA



Table 1. Mean center location error for each of the VIVID videos in the single-object tracking results and the mean error across all of the
videos. For each video, the algorithm with the lowest error is denoted in red and the second lowest error is denoted in blue.
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Figure 6. Center location error for each target in the multi-target video.
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Figure 7. Precision and success plots for multi-target tracking,
computed by averaging across the three targets in the video.

Table 2. Mean CLE values for SPT sub-models
alm {m am

al a

Egtest01 | 10.4
Egtest02 | 7.47
Egtest03 | 4.97
Egtest04 | 128.
Egtest05 | 21.5

9 105.37 99.17
92.50 110.64
117.69 100.75

39 81.97 179.54

& 5955 170.16

229.49 108.59
134.01 306.89
174.49 203.43
31297 167.25
87.39  166.47

Mean 34.5

7 9141 132.05

187.67 190.52

Table 3. The speed, in seconds per frame, and implementation lan-
guage for each tracker.

Method | Overall Speed (s) | Language
Ours 0.65 MATLAB
CVT 0.02 MATLAB

ASLA 0.52 MATLAB

L1 0.08 MATLAB
MIL 0.28 C++
KCF 0.07 C++
OAB 0.71 C++

SPOT 0.27 MATLAB

operations was Selective Search, which required 0.93s each
time it was invoked. The frame alignment required to com-
pensate for camera motion in the computation of the motion
map is expensive, and most of that time could be eliminated
if a stationary camera was used.

5. Conclusions

In this paper, we proposed an algorithm for online visual
tracking of small moving objects. SPT is motivated by how
the primate smooth pursuit system is thought to work, and
the algorithm elegantly combines saliency maps for appear-
ance, future location, and motion. Although primates are
limited to tracking one object at a time using smooth pur-
suit, SPT extends easily to tracking multiple objects simul-
taneously with little computational overhead. We showed
that the algorithm surpassed comparison methods from the
literature on tracking moving vehicles in videos acquired by
an aerial platform.
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