
Fine-Grained Object Recognition with Gnostic Fields

Christopher Kanan
Jet Propulsion Laboratory

California Institute of Technology
ckanan@caltech.edu

Abstract

Much object recognition research is concerned with
basic-level classification, in which objects differ greatly in
visual shape and appearance, e.g., desk vs duck. In con-
trast, fine-grained classification involves recognizing ob-
jects at a subordinate level, e.g., Wood duck vs Mallard
duck. At the basic-level objects tend to differ greatly
in shape and appearance, but these differences are usu-
ally much more subtle at the subordinate level, making
fine-grained classification especially challenging. In this
work, we show that Gnostic Fields, a brain-inspired model
of object categorization, excel at fine-grained recognition.
Gnostic Fields exceeded state-of-the-art methods on bench-
mark bird classification and dog breed recognition datasets,
achieving a relative improvement on the Caltech-UCSD
Bird-200 (CUB-200) dataset of 30.5% over the state-of-the-
art and a 25.5% relative improvement on the Stanford Dogs
dataset. We also demonstrate that Gnostic Fields can be
sped up, enabling real-time classification in less than 70 ms
per image.

1. Introduction

Fine-grained object classification refers to distinguish-
ing among object categories at subordinate levels, e.g., bird
species, domestic dog breeds, car models, and facial iden-
tity. Many real-world computer vision applications require
fine-grained object categorization, e.g., automated surveil-
lance systems that record the model of vehicles, and sys-
tems that classify fish species to measure the level of bio-
diversity in an ocean environment. With the exception of
face identification, much computer vision research has fo-
cused on building systems for discriminating among basic-
level categories, e.g., alligator vs automobile. Many of the
best known benchmark datasets mostly contain basic-level
objects, in which few visual features are shared among the
majority of the categories, e.g., Caltech-101 [12], Caltech-
256 [14], and PASCAL VOC [10]. Fine-grained classi-
fication is often harder than basic-level categorization be-

cause the differences among objects are more subtle, with
fewer category-specific features. There has recently been
a substantial amount of interest in non-face subordinate-
level classification by the computer vision community (e.g.,
[3, 4, 5, 8, 23, 40, 41]).

In this work, we apply Gnostic Fields, a brain-inspired
model of object classification, to the problem of fine-
grained categorization. In 1967, Jerzy Konorski hypothe-
sized that the brain contains regions existing near the top of
the visual processing hierarchy that engage in the classifi-
cation of mutually-exclusive categories [25], and he called
these regions Gnostic Fields. In his theory, Gnostic Fields
are comprised of competing gnostic sets, with one set per
category. Each set contains a potentially redundant popu-
lation of category specific gnostic neurons (units). Gnostic
neurons coarsely encode particular views or properties of an
object, while retaining a degree of tolerance to non-relevant
changes in object appearance, scale, and location.

In the past decade, functional neuroimaging has yielded
evidence for the existence of brain regions devoted to visual
categorization. The fusiform gyrus has been implicated in
subordinate classification of faces [22], and it exhibits se-
lective activity when radiologists view scans [16] and when
birders and car experts perceive birds and cars [13]. Neu-
rons exhibiting characteristics similar to gnostic units have
been found in many brain areas (see [15, 35] for reviews).

In [19], the first implementation of Konorski’s Gnostic
Field model was proposed, and it achieved state-of-the-art
accuracy on image, sound, and electronic odor classifica-
tion tasks. Unlike deep neural networks that learn features
from pixel-patches (e.g., [27, 29]), Gnostic Fields operate
on intermediate-level features. In [19] these intermediate-
level features were dense SIFT descriptors, and in later
work space-variant filters learned using independent com-
ponent analysis were used [18].

In this paper, we first improve the Gnostic Field model
in several ways, allowing it to scale to larger datasets. An
overview of our model is given in Fig. 1. We then demon-
strate that Gnostic Fields excel at two fine-grained recog-
nition tasks: bird species categorization and dog breed cat-



egorization. Subsequently, we explore how the number of
gnostic units and how chromatic/grayscale features influ-
ences both speed and accuracy, which was not explored in
earlier work [19]. Finally, we use these results to show that
Gnostic Fields can classify individual images in less than
70 ms without substantially impairing accuracy.

2. Related Work

Gnostic Fields can be interpreted as a kind of feedfor-
ward neural network, and they are related to both proba-
bilistic neural networks [36] (PNNs) and radial-basis func-
tion networks (RBFNs) [30]. When a PNN or RBFN clas-
sifies an input, it compares it to a layer of pattern detection
units to assess its similarity to the training data. Typically
there is one pattern detection unit per training instance, but
occasionally clustering has been used to acquire the pattern
detection units (e.g., [31]). To combine information across
the pattern detection units, PNNs sum the output of labeled
pattern detection units and RBFNs apply linear regression
to their output. Because images vary in size, algorithms for
extracting dense descriptors generally produce a variable
number of descriptors per image, and to use them with these
models it would be necessary to somehow combine the de-
scriptors into a single vector, e.g., by using spatial pyramid
matching [28]. In contrast, Gnostic Fields innately expect
a variable number of densely extracted descriptors as their
input. Gnostic Fields assess each descriptor’s similarity to
coarsely encoded gnostic units (pattern detection units) for
each category, with the outputs given by the most active
units per category, analogous to the max-pooling operation
in the Hierarchical Max (HMAX) model of object recogni-
tion [34]. This gives Gnostic Fields a degree of invariance
to changes in object shape and appearance. Note that in the
HMAX model, max-pooling is used to construct descriptors
by pooling over similar features, e.g., features with the same
orientation, whereas here it is used to measure the similar-
ity to each category. After max-pooling, Gnostic Fields use
a form of divisive normalization to modulate the network’s
activity, before finally combining information across all of
the descriptors extracted from an image.

Beyond being feed-forward neural networks, Gnostic
Fields share few similarities with recent deep neural net-
work approaches to object recognition, e.g., [27, 29]. These
algorithms are extremely powerful and instead of using
hand-engineered descriptors they learn image features from
natural images. Deep neural networks can even exhibit units
with properties analogous to gnostic units as an emergent
phenomenon [29]. However, to achieve good performance
these algorithms require extremely large datasets, otherwise
they may not generalize well. Gnostic Fields can be ef-
fective even with little training data [19], and they are also
comparatively easy to implement as long as toolboxes for
extracting dense descriptors, clustering, and learning linear

classifiers are available.
In computer vision, the most similar model to Gnos-

tic Fields is the Naive Bayes Nearest Neighbor (NBNN)
model [2]. To classify an image, NBNN accumulates ev-
idence from descriptors, with the evidence gathered per de-
scriptor done using a nearest neighbor approach. Gnostic
Fields use a nearest cluster center approach instead, allow-
ing them to be much more computationally efficient so that
they can be run on larger datasets. Both approaches abstain
from the hard-binning done in the bag-of-words model.

With the exception of Gnostic Fields, neural networks
have not been used on recent fine-grained recognition
benchmarks, but there have been many other approaches
used for this task, e.g., [3, 4, 5, 8, 23, 40, 41].

3. Model

3.1. Image Features

Gnostic Fields sit atop a sensory processing hierar-
chy. Implementation-wise, this means that distinctive high-
dimensional features are used as their input. While self-
taught learning [33] using independent component analysis
or sparse coding could be used to learn visual features from
natural images, we chose to use an engineered approach:
dense Color SIFT (CSIFT) descriptors [37]. CSIFT descrip-
tors are SIFT features extracted from an achromatic (lumi-
nance) channel and two opponent-color channels [37], and
they can be quickly extracted from images. Dense CSIFT
descriptors are extracted from densely sampled image loca-
tions, and they have been widely used in object recognition
research (e.g., [19, 28]).

Prior to extracting CSIFT features, we resized each im-
age to make its smallest dimension 128 pixels, with the
other dimension chosen to preserve the image’s aspect ra-
tio. Because SIFT descriptors are sensitive to an image’s
gamma encoding [20], we applied a retina-like nonlinear
brightness normalization procedure to the image [21]. This
is given by

I ′c(z) =
log(ε) − log(Ic(z) + ε)

log(ε) − log(1 + ε)
, (1)

whereε > 0 controls the strength of the normalization and
Ic(z) is the image for RGB channelc at a particular location
z. For each image, theε that made the mean output value
across all channels closest to0.65 was chosen, although the
value ofε was constrained to be between10−6 and0.5.

Subsequently, we converted the normalized image to
CSIFT’s Gaussian color space, and then extracted SIFT de-
scriptors from each of the three color space channels. We
used the dense SIFT implementation from the VLFeat tool-
box [38], which was configured to use 11×11 spatial bins
with a stride (step size) of 5 pixels. For each image, this
configuration produced about 500–1500 128-dimensional



Figure 1. An example fine-grained Gnostic Field for categorizing among gorillas, chimpanzees, and orangutans. Achromatic image features
are densely extracted from the image, and they are subsequently whitened and normalized. This is analogous to processing in early visual
cortex. This information is sent to each gnostic set, with the units in the gnostic set for gorillas responding strongest. The output of
each gnostic set is given by the most active gnostic unit. This activity is competitively normalized, which suppresses the output of the
chimpanzee and orangutan sets. Evidence from all of the achromatic image descriptors is then accumulated. A linear classifier combines
information from all of the achromatic gnostic sets as well as the chromatic gnostic sets (not shown) to predict the category.

feature vectors at different image locations for each of the
three image channels. Only a single scale was used in our
experiments. We then segregated the CSIFT descriptors into
two channels: (1) the 128-dimensional achromatic channel
alone and (2) a 384-dimensional channel formed by con-
catenating all three CSIFT channels together.

We augmented each descriptorgc,t from channelc with
topological information by appending a vectorˆ̀

c,t = `c,t

||`c,t||

to the descriptor, wherèc,t =
[
xt, yt, x

2
t , y

2
t , 1
]T

and
(xt, yt) is the spatial location ofgc,t normalized by the
image’s dimensions (size) to be between -1 and 1. This
yieldsĝc,t. We then learned whitening transformations with
whitened PCA (WPCA) [1] for each of the two channels
using the location augmented descriptors. WPCA learns a
decorrelating transformation that normalizes the variance
and can also be used for dimensionality reduction. The
transformation is given by

Uc = (Dc + ξI)−
1
2 ET

c , (2)

whereI is the identity matrix, the columns of the matrixEc

contain the eigenvectors of the channel’s covariance matrix,
Dc is the diagonal matrix of eigenvalues, andξ is a reg-
ularization parameter, withξ = 0.01 in experiments. In
[19] WPCA was applied directly to the training data, but
this is infeasible with a large dataset. Instead, we applied
WPCA to descriptors extracted from 584 images from the
McGill color image dataset [32], which contains images
of scenes. We only used the first 120 rows ofUc, which
yielded Wc. Subsequently, the whitened descriptors are

made unit length, allowing measurements of similarity us-
ing dot products [26]. The final 120-dimensional whitened
and normalized descriptorsfc,t are given by

fc,t =
Wcĝc,t

‖Wcĝc,t‖
. (3)

3.2. Gnostic Fields

We briefly provide the details necessary to implement
Gnostic Fields here, but see [19] for additional information.
A Gnostic Field for channelc is made up ofK gnostic sets,
with one set per category. Each gnostic set contains gnostic
units that assess how similar thefc,1, . . . , fc,T descriptors
from an image are to previous observations from that cate-
gory. The output of a gnostic set for categoryk and from
channelc is given by the unit in the set that is most similar
to the descriptor (greatest dot product similarity), i.e.,

ac,k,t = max
j

(vc,k,j ∙ fc,t) , (4)

where the max is taken over all of thevc,k,j units (weight
vectors) in the gnostic set. This max pooling step enables
the gnostic set to vigorously respond to features matching
the category’s training data.

Sphericalk-means [9] was used to learn the unit length
vc,k,j gnostic units for each of the2K gnostic sets (K sets
per channel) [19]. Sphericalk-means is an unsupervised
clustering algorithm for unit length data that learns unit
length clusters [9]. The number ofvc,k,j units learned for a



Figure 2. The total number of units learned for a gnostic set as a
function of the number of descriptors extracted from images la-
beled with the gnostic set’s category. In our main experiments, a
median of 7100 units were allocated per gnostic set for the Stan-
ford Dogs dataset (red dot) and 5760 units per gnostic set for the
augmented CUB-200 dataset (green dot).

categoryk from channelc is given by

m (k, c) = min
(⌈

b (log (nk,c) + 1)2
⌉

, nk,c

)
, (5)

wherenk,c is the total number of descriptors from category
k andb regulates the number of units learned (b = 50 in
our main experiments, but see Section 4.5). This equa-
tion is plotted in Fig. 2, and it implements Konorski’s idea
that the number of gnostic units allocated to a gnostic set
would increase with the amount of exposure to the set’s ob-
ject category, with fewer units being recruited as experience
increases [25].

Gnostic Fields use inhibitive competition to suppress the
output of the least active gnostic sets. For theK gnostic sets
in channelc, this is implemented by attenuating their output
using half-wave rectification [17], i.e.,

qc,k,t = max (ac,k,t − θc,t, 0) , (6)

with the thresholdθc,t = 1
K

∑
k′ ac,k′,t. The responses are

then normalized using

βc,k,t = νc,tqc,k,t, (7)

with

νc,t =

∑
k′ qc,k′,t

(
K−1 +

∑
k′ q2

c,k′,t

)3/2
, (8)

acting as a form of variance-modulated divisive normaliza-
tion (see [19]). This step has been previously reported to be
crucial to achieving good image recognition accuracy using
Gnostic Fields [19].

To accumulate categorical evidence across the entire im-
age from each channel, Gnostic Fields simply sum the ac-

tivity of the βc,k,t units across descriptors, i.e.,

ψc,k =
T∑

t=1

βc,k,t. (9)

Subsequently, the responses from all of these evidence ac-
cumulation units are combined across all categories and
channels into a single vectorΨ. This vector is then made
mean zero and normalized to unit length.

A linear multi-category classifier is used to make the
final categorical prediction, which was shown to improve
performance by several percent in [19]. This allows less
discriminative channels to be down weighted and it helps
the model cope with confused categories. The model’s pre-
dicted category is given bỹk = argmaxk wk ∙Ψ, wherewk

is the weight vector for categoryk. Thewk weights were
learned with the LIBLINEAR toolbox [11] using Crammer
and Singer’s multi-class linear support vector machine for-
mulation [6], with a low cost parameter (0.0001).

3.3. Implementation differences

There are several notable differences between our Gnos-
tic Field implementation and that of [19]. In [19], WPCA
was directly applied to the training features, which demands
a very large amount of memory to handle big datasets. Here,
we adopted a simple self-taught learning approach and ap-
plied WPCA to a separate dataset. No dimensionality re-
duction was done in [19]. Here, we used only a chromatic
and an achromatic channel, whereas in [19] each CSIFT
channel was used individually. We also changed how the
number of gnostic units are allocated to each gnostic set,
which will allow us to better control the number of units
allocated (see Section 4.5).

4. Experiments

4.1. Bird species classification

The Caltech-UCSD Bird-200 (CUB-200) [39] is used for
assessing methods for fine-grained object recognition. We
used the 2010 version of the dataset, which is most widely
used. It contains 6,033 images of 200 bird species, mostly
from North America. There are 20–39 images per bird
species. Example images are shown in Fig. 3A. Follow-
ing the standard setting (e.g., [3, 8, 19, 23, 40]), the images
were cropped to their bounding boxes. We assessed perfor-
mance using the official train/test partitions, in which 15 im-
ages per category are used for training and the rest are used
for testing. We also trained the model using a version of
the training set augmented using horizontal reflections. Our
results are given in Table 1. Our Gnostic Field implemen-
tation performs slightly better than the implementation of
[19]. This indicates that our changes did not impair perfor-
mance, even though we used two channels instead of three.



Figure 3.A. Example CUB-200 images from the Indigo Bunting,
Wilson Warbler, Yellow Warbler, and Cardinal categories. The
Wilson Warbler and Yellow Warbler share many traits.B. Ex-
ample dog images from the Chihuahua, Afghan Hound, Basset
Hound, and Beagle categories of Stanford Dogs. Note that some
breeds do not have consistent coloration (e.g., Afghan Hounds),
that the dogs are of various sizes and ages (i.e., full grown vs.
puppy), and that multiple dogs can appear in a single image.

Using the augmented version of the training dataset, Gnos-
tic Fields exceeded the best previously reported result [8],
which also used an augmented version of the dataset, by
30.5% (in relative terms).

4.2. Dog breed classification

ImageNet [7] contains over 14 million high-resolution
images belonging to almost 22,000 categories. The images
were gathered from the Internet, and they were labeled by
humans using Amazon’s Mechanical Turk crowd-sourcing
tool. A subset of ImageNet containing 120 different dog
breeds has been used to create two fine-grained classifica-
tion datasets: the ImageNet-2012 fine-grained classification
challenge and Stanford Dogs [24]. We did experiments us-
ing both of these datasets. Example images are shown in
Fig. 3B.

4.2.1 Stanford Dogs

The Stanford Dogs dataset [24] contains 20,580 images,
with 148–252 images per category. Following the approach
used by others (e.g., [24, 40]), we cropped the images to
their bounding boxes, trained on 100 images per category
using the official training partition, and tested on the re-
maining images. We did not augment the training dataset.
Our results are given in Table 2. Using our full model, we
achieved 47.7% accuracy, outperforming the previous best
result of 38.0% [40] (a relative improvement of 25.5%).

4.2.2 ImageNet 2012 Fine-Grained Challenge

For the ImageNet 2012 Fine-Grained Challenge, the test la-
bels are not publicly available. The official competition set

Table 2. Mean per-class accuracy on the Stanford Dogs dataset us-
ing the official train/test partition. We assessed both the combined
model (CSIFT) and a model using grayscale SIFT alone.

Model Accuracy (%)
Gnostic Field (CSIFT) - Ours 47.7
Gnostic Field (SIFT) - Ours 40.3
Template Model (Edge Templates) [40] 38.0
Spatial Pyramid Matching (SIFT) [24] 22.0

contains 148–252 training images per category and 100,000
unlabeled test images, although only the 12,000 test images
containing dogs are used by the evaluation server to mea-
sure performance.

We trained a Gnostic Field using the official competition
training set, ran the model on the test images, and then up-
loaded our test image predictions to the competition server1.
For this dataset, the quantitative measure of performance is
the mean average precision (mAP), i.e., the mean of the av-
erage precision values calculated for each individual cate-
gory. Our results are given in Table 3. Team ISI had the
best model in the 2012 competition, and they used CSIFT,
GIST, and RGB-SIFT features. Gnostic Fields exceeded
this result using CSIFT features alone.

4.3. Running time of full model

Our experiments were done on a machine with an In-
tel Core i7-980X processor (introduced in 2010) and 24GB
of RAM. Our machine also has a 6GB NVIDIA GeForce
GTX TITAN graphics card, which was used to speed up dot
products and matrix multiplications. All experiments were
conducted using MATLAB R2013a.

For Stanford Dogs and CUB-200, classifying each im-
age took 200–250 ms with the full model. This is suffi-
ciently fast for Gnostic Fields to be used in many real-time
or online classification tasks. Most of this time was domi-
nated by the computations required by equations 3 – 9, with
CSIFT feature extraction taking about 30 ms (10 ms per
channel) per image. Learning the gnostic units required 31
s for the augmented CUB-200 dataset and 37 s per category
for Stanford Dogs using our GPU-based implementation of
sphericalk-means. There are a number of ways the model
could be further sped up, with the easiest being using fewer
channels and/or fewer gnostic units per category. Both of
these changes could potentially decrease accuracy, and we
investigate this in the next two sections.

4.4. Individual channel performance

In our main results we used a linear classifier to fuse the
output of achromatic and chromatic Gnostic Fields. We ex-
amined the benefit this provides by training linear classifiers

1The competition results are available at http://www.image-
net.org/challenges/LSVRC/2012/results.html



Table 1. Comparison mean-per-class accuracy on CUB-200 [39]. Some reported results augment the size of the training set by horizontally
flipping the training images. All reported results use color descriptors. Chance is 0.5%.

Model Augmented Accuracy (%)
Gnostic Field (CSIFT) - Ours Yes 42.8
BubbleBank (SIFT + Color Histograms) [8] Yes 32.8
Gnostic Field (CSIFT) - Ours No 32.3
Gnostic Field (CSIFT) [19] No 30.2
Template Model (Kernel Descriptors) [40] No 28.2
TriCos (SIFT + Color Histograms) [4] No 26.7
Multi-cue (CSIFT) [23] No 22.4
Hierarchical Matching (SUN) [5] No 19.2
Random Forest (CSIFT) [41] No 19.2
MKL (HSV-SIFT + Geometric Blur ) [3] No 19.0

Table 3. Comparison results on ImageNet-2012 fine-grained classification challenge (task 3) with the top two teams. Note that we do not
have a team name since our entry was uploaded in 2013.

Model Team mAP (%)
Gnostic Field (CSIFT) - Ours N/A 36.461
Fisher Vectors (CSIFT + GIST + RGB-SIFT) ISI 32.252
Fisher Vectors (SIFT + Color Features) XRCE/INRIA 30.993

Figure 4. The results of the achromatic and chromatic Gnostic
Fields alone, along with our main results using the combined ap-
proach, on CUB-200 and Stanford Dogs (b = 50 for these results).
For both datasets chromatic features outperform achromatic fea-
tures, although combining both achieves the highest accuracy.

on the output of each Gnostic Field individually for CUB-
200 and Stanford Dogs. These results are given in Fig. 4.
For CUB-200, our results use the augmented version of the
dataset. For both datasets, a significant gain in performance
is achieved by using the combined approach, although the
improvement is relatively small for CUB-200 since color is
very diagnostic for birds.

4.5. Gnostic neuron count, speed, and accuracy

Real-time object recognition is needed for many practi-
cal applications such as image search and robotic visual sys-
tems. To increase the speed of Gnostic Fields, the number
of gnostic units learned should be minimized, since every
descriptor is compared to every gnostic unit in each gnos-
tic set. However, using too few units will degrade accuracy.
To examine how the number of units allocated to a gnos-
tic set influences accuracy and speed, we varied the value
of the b parameter in equation 5, which linearly increases

the number of units in each set. Because CUB-200 con-
tains fewer images, and hence fewer descriptors, we focus
on Stanford Dogs. We also limited this experiment to only
the Chromatic channel because using both channels doubles
the amount of time required while only giving a small, but
significant, boost to performance (see Section 4.4).

Our results using only the Chromatic channel are shown
in Fig. 5. As expected, accuracy was lowest whenb = 1
and greatest whenb = 50. However, usingb = 20 images
were classified in only 69.5 ms each (14 frames per second),
while accuracy only decreased by 1.2% from whenb = 50.
This graceful scaling of accuracy and speed is a very desir-
able property for many real-world applications.

5. Discussion

In this paper we demonstrated that Gnostic Fields are
effective at fine-grained object categorization by achieving
state-of-the-art results on several subordinate-level classifi-
cation benchmarks. We used only a single feature type at a
single scale and performance would likely increase further
if additional feature types were used. We also assessed the
impact of the number of gnostic units in a gnostic set on the
performance of Gnostic Fields, and we demonstrated that
Gnostic Fields are suitable for real-time applications. While
it is unlikely that our implementation’s learning rules are
implemented in the brain, the model uses neurally plausi-
ble operations during classification, e.g., dot products, max-
pooling, and divisive normalization [19].

We are currently investigating how to make Gnostic
Fields even faster during classification. In our implemen-
tation, each descriptor is compared to all of the units in ev-
ery gnostic set. This means that without additional paral-



Figure 5. The influence of the theb parameter in equation 5 on speed and accuracy with the Chromatic channel alone. The number of units
in each gnostic set increases linearly withb. A. As b increases the amount of time required per image increases approximately linearly.B.
Mean per-class accuracy on the Stanford Dogs dataset as a function ofb.

lelism, e.g., using a cluster with many machines or multi-
ple GPUs, it is unlikely that Gnostic Fields could achieve
real-time performance with very large datasets such as the
ImageNet 22,000 object recognition challenge. One poten-
tial way to overcome this limitation would be to exploit
basic-level subcategories, so that fine-grained gnostic sets
are only evaluated if it is likely that the object belongs to its
basic-level category.
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