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Abstract

Since Yarbus’s seminal work, vision scientists have argued that our eye move-
ment patterns differ depending upon our task. This has recently motivated
the creation of multi-fixation pattern analysis algorithms that try to infer a
person’s task (or mental state) from their eye movements alone. Here, we in-
troduce new algorithms for multi-fixation pattern analysis, and we use them
to argue that people have scanpath routines for judging faces. We tested
our methods on the eye movements of subjects as they made six distinct
judgments about faces. We found that our algorithms could detect whether
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a participant is trying to distinguish angriness, happiness, trustworthiness,
tiredness, attractiveness, or age. However, our algorithms were more accu-
rate at inferring a subject’s task when only trained on data from that subject
than when trained on data gathered from other subjects, and we were able
to infer the identity of our subjects using the same algorithms. These results
suggest that 1) individuals have scanpath routines for judging faces, and
that 2) these are diagnostic of that subject, but that 3) at least for the tasks
we used, subjects do not converge on the same “ideal” scanpath pattern.
Whether universal scanpath patterns exist for a task, we suggest, depends
on the task’s constraints and the level of expertise of the subject.

Keywords: eye movements, machine learning, scanpath routines, face
perception

1. Introduction

Multi-Fixation Pattern Analysis (MFPA) is a new eye movement analysis
technique that harnesses machine learning to make inferences about subjects
from their eye movements (Benson et al., 2012; Greene et al., 2012; Tseng
et al., 2013; Kanan et al., 2014; Borji and Itti, 2014). MFPA algorithms
take a person’s scanpath, a sequence of fixations, as their input and use the
scanpath to infer traits such as the task the person was given. If an algorithm
can make this inference above chance when trained on a person’s scanpaths
for specific tasks, then this suggests that the person might have scanpath
routines for accomplishing one or more of the tasks. Prior work with MFPA
has focused on validating the technique for inferring the task given to a
subject when viewing scenes (Greene et al., 2012; Kanan et al., 2014; Borji
and Itti, 2014) and for inferring whether the subject has a particular disease
(Benson et al., 2012; Tseng et al., 2013). In this paper, we use MFPA to
determine if people have scanpath routines for making different inferences
about faces.

Humans make about three saccadic eye movements per second. Saccades
are needed because the human retina has variable spatial resolution. It only
acquires high resolution information in its central (foveal) region, with the
resolution in the retinal periphery being far lower. The information in the
periphery, along with information about the task being performed, can help
direct saccades to diagnostic features for the task at hand. It makes sense,
then, for humans to deploy scanpath routines for specific tasks so that diag-
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nostic information can be acquired using as few fixations as possible. For-
mally, we define a scanpath routine as a task-specific sequence of fixations
that exhibits a particular repeated spatial or spatio-temporal pattern. In
order to rule out certain trivial cases, we also require that scanpath rou-
tines be acquired implicitly through learning, rather than elicited via direct
instruction.

We hypothesized that scanpath routines for making common inferences
about faces are likely to exist because some regions of the face are more
diagnostic than others for some tasks. For example, the mouth is more di-
agnostic when judging whether a face is expressive or not and the eyes are
crucial features for judging gender and identity (Gosselin and Schyns, 2001;
Schyns et al., 2002). Similarly, in face recognition it has been shown that
the left eye is the most diagnostic feature initially, followed by both eyes
(Vinette et al., 2004). This finding is corroborated by results showing that
people tend to fixate slightly to the left of the nose initially during face
recognition (Hsiao and Cottrell, 2008). Taken together, these findings indi-
cate that different face regions have varied diagnostic utility. However, the
scanpaths people use to make inferences from faces may not be universal, be-
cause people have different experiences and slightly different visual systems.
Peterson and Eckstein (2012) showed that the fixation points used by people
to determine age, gender, and emotional state of a face differ across these
three tasks. In subsequent work, they also showed that human eye move-
ments during face identification were idiosyncratic (Peterson and Eckstein,
2013). Mehoudar et al. (2014) similarly found that scanpaths during face
viewing are idiosyncratic, and that individuals continued to use the same
idiosyncratic patterns when viewing faces 18 months later. Finally, several
papers have shown that people’s scanpaths have different properties when
viewing novel faces compared to viewing familiar ones (Althoff and Cohen,
1999; Joyce, 2000).

The idea of scanpath routines is closely related to “scanpath theory”
(Noton and Stark, 1971; Spitz et al., 1971). Scanpath theory argues that
eye movements are generated in a top-down manner to facilitate correct
recognition of an image by comparing it to previous experience. Learning
a recognition task is taken to mean storing both the visual features and the
motor sequence used to acquire the features. Recognition involves recapitu-
lating the same scanpath when encountering the same stimulus. The strong
form of scanpath theory predicts that individuals should deploy an identical
pattern of eye movements during recognition, which is not consistent with
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human behavior (Henderson, 2003). If humans did behave according to the
strong theory, then it is likely that this behavior would have limited utility
since humans rarely encounter exactly the same visual stimulus twice. A
more general version of scanpath theory would predict that eye movements
should be similar (statistically regular) between viewings of images from the
same stimulus class, and this theory would allow scanpath routines to evolve
over time to enable improved processing of the stimulus class, e.g., doing
the task accurately using fewer fixations. This version of scanpath theory is
consistent with our notion of scanpath routines.

To demonstrate the existence of scanpath routines for specific tasks, it
is necessary to show that scanpaths are altered by the task, but this is not
sufficient because it allows certain trivial cases. For example, Tatler et al.
(2010) showed participants a photo of Alfred Yarbus wearing a coat and asked
subjects various questions. When the subjects engaged in free viewing, the
majority of their fixations were located on Yarbus’s face, whereas when they
were instructed to remember his clothing their fixations were more evenly
distributed between his face and clothes. In their study, the instructions
essentially required the subjects to view different parts of the image (the
clothes). Obviously, one can easily create a situation where verbal instruc-
tions result in discriminable scanpaths. Trivially, one can ask the subject to
look at the upper left hand corner of the image on one trial and the lower
right on another. These examples are not scanpath routines because they are
not acquired implicitly, i.e., the instruction tells the subject where to look.

For an observer to deploy a scanpath routine for a task, we believe two
constraints must be met. First, the task needs to be one that an observer
has experience with. Second, the task should be one in which the same task-
diagnostic regions in each image will need to be fixated to perform the task
accurately and using as few fixations as possible. In our study, these condi-
tions are satisfied by using aligned facial images, such that the information
is always in relatively the same locations in each image, and asking questions
about them that subjects are likely to have experience with. From birth, hu-
mans acquire an enormous amount of experience in making judgments about
others from their faces, suggesting that they will have established scanpath
routines for efficiently answering these questions about faces. We ask our
subjects to judge the age, fatigue, angriness, happiness, trustworthiness, and
attractiveness of the people in the images. Because informative facial fea-
tures are always located in the same relative position, it is possible to develop
a scanpath routine so that task-relevant information can be obtained. To ad-
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equately test for scanpath routines, we ask subjects the same six questions
about every image, so that we are able to determine that the eye movements
are not driven purely by the stimulus.

We attempt to find evidence for scanpath routines when making judg-
ments about faces by using three different MFPA algorithms. The first
method uses only summary statistics, i.e., the mean number of fixations
in a trial and mean fixation duration, to make its inference. This approach
ignores the spatio-temporal dynamics of the fixations, but it serves as a useful
baseline. The second algorithm models the spatial distribution of fixations,
including their duration at each location, but it ignores the temporal order
information. The last algorithm is able to preserve information about the
order of fixations as well as use spatial information. If any of the methods is
above chance then we have strong evidence for scanpath routines for judg-
ing faces. By comparing the spatial and spatio-temporal methods, we can
gain insight into the nature of these scanpath routines. For instance, if the
spatio-temporal algorithm is significantly more accurate than the spatial al-
gorithm then we can infer that there are diagnostic temporal regularities in
the scanpaths.

We look for evidence of scanpath routines using a within-subjects and
between-subjects analysis. If our algorithms are less accurate in a between-
subjects analysis compared to within-subjects, then this suggests that people
have idiosyncratic scanpath routines and that we can use our algorithms to
infer the identity of the subjects.

2. Methods and Materials

2.1. Participants

The data used in our experiments is from 12 male and 12 female Caucasian
UCSD students (mean age 19 years 8 months; age range 18-22), who received
course credit for their participation. One additional female was recruited,
but the data was excluded because she did not respond before the timeout
in 98% of the trials. For the other participants, this occurred in 3% of
trials on average (Min: 0%, Max: 11%). This data was not excluded in
our analysis. All participants were right-handed based on the Edinburgh
handedness inventory (Oldfield, 1971), and all had normal or corrected-to-
normal vision. Participants gave informed consent after the study had been
explained to them, the study was approved by UC San Diego’s Institutional
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Review Board, and the work was carried out in accordance with the Code of
Ethics of the World Medical Association (Declaration of Helsinki).

2.2. Stimuli

The stimuli in our experiment consisted of 48, 561×701 pixel color face
images, half female and half male. There were three images of each face
model in this dataset, expressing either happy, angry, or neutral facial ex-
pressions. During a brief familiarization session to acquaint the participants
with the experimental paradigm (described further in Section 2.4), five ad-
ditional images of face models not used in the remainder of the study were
employed. All face images were front-view, Caucasian, and none had facial
hair or glasses. The images came from four age groups: child, young adult,
adult, and elderly. Because no single dataset at the time of the study con-
tained both images of children and elderly individuals, we combined images
from two face datasets. Images of children came from the Radboud Faces
Database (Langner et al., 2010). All of the other images came from the
FACES dataset (Ebner et al., 2010), which contains images of young adults,
adults, and elderly individuals.

Images were aligned without altering configural information by rotating,
scaling, and translating them so that the triangle defined by the two eyes
and the philtrum was as close as possible in euclidean distance to a reference
triangle. This alignment was done using a nonreflective similarity transfor-
mation in MATLAB with the ‘imtransform’ function. To localize the face
parts, we used a face part detection algorithm (Everingham et al., 2006). We
then imposed a uniformly gray background. Participants viewed the stimuli
on a 21 inch Sony CPD-G520 cathode ray tube monitor, with a refresh rate
of 100 Hz, γ = 2.2, and a resolution of 1200x1024. The width of each face
model’s head, measured from the extreme outer edges of each pinna, on the
screen was about 13 cm, and participant’s viewing distance was 50 cm, so
each head spanned about 15 degrees of visual angle. Example face model
stimuli are shown in Figure 1.

2.3. Apparatus

An SR Research EyeLink II eye tracker was used to record participant
eye movements. Binocular vision was used, but only the data from the eye
with less calibration error was used in our analysis. The tracking mode was
set to pupil only, with a sampling rate of 500 Hz. We used the EyeLink II’s
default algorithm to identify fixations.
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Figure 1: Example aligned face images used in our study. Each face model exhibits three
emotional expressions: happy, neutral, and angry. There are four age groups: child, young
adult, adult, and elderly.

An eight button Cedrus button box (four buttons per hand) was used to
record participant responses. The right hand was used to record participant
ratings of the stimuli, with each of the four buttons numbered sequentially.
The left thumb was used to press the “GO” button, which was pressed by
participants to proceed after viewing the instructions. This approach was
used because the Cedrus button box has superior timing compared to the
keyboard, it made it easier for participants to recall which key to press, and it
reduced the likelihood that participants would look at their fingers during the
experiment. All programming was done in MATLAB using Psychtoolbox-
3 (Brainard, 1997) with the Eyelink toolbox extension (Cornelissen et al.,
2002).

2.4. Design

A schematic of our experiment is given in Figure 2. The experimenter
explained to the participant that they would see a face, and would need to
rate it using a button box “as quickly and confidently as possible, because the
image will timeout after a few seconds.” The experimenter then familiarized
the observer with the buttons of the input box and prompted the observer to
begin the task by pressing a separate “GO” button. Participants were seated
50 cm away from the display monitor. After the initial eye tracker calibration,
participants were familiarized with the experimental paradigm. Participants
were asked to “Rank how clever this person is, on a scale from 1 (not clever)
to 4 (very clever).” We restricted the ranking to only four choices because
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Figure 2: Our experiment was comprised of six blocks. In each trial, participants were
instructed with the block’s task and then one of the faces appeared to the right or left of
the fixation cross. Each face was observed only once in each block.

the button box only had four buttons for the right hand. Subsequently, a
fixation cross appeared in the center of the screen. The experimenter then
initiated the trial when the participant was gazing at the cross, causing the
fixation cross to disappear and the image to appear randomly either on the
right or left side of the screen. The distance on the screen from the initial
fixation point to the nasion was 11.35 cm; hence, a 13 degree saccade was
needed to fixate the center of the face. Once the participant had ranked the
image according to the task, or 3 seconds had elapsed, the on-screen prompt
returned, followed by gaze correction, and then the next image would appear.
The block continued in this manner until all five images had been viewed by
the observer and the block was completed. This familiarization block used
five images that were distinct from the 48 images used in each block of the
main experiment. The data collected from this familiarization block was
excluded from analysis.

After familiarization, participants viewed the 48 images in 6 blocks, so
each image was seen 6 times. Each block had a different prompt, and a Latin
square design was used to determine the order of the blocks for each partic-
ipant. The Latin square design was used to compensate for any potential
memory confound due to participants seeing the faces multiple times in our
between-subjects analysis. The order of the images was randomized within
each block. The six block prompts were (1) Rank how old this person is on
a scale from 1 [child] to 4 [elderly]; (2) Rank how fatigued this person is on
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a scale from 1 [alert] to 4 [tired]; (3) Rank how happy this person is, on a
scale from 1 [not happy] to 4 [very happy]; (4) Rank how angry this person
is, on a scale from 1 [not angry] to 4 [very angry]; (5) Rank how trustworthy
this person is, on a scale from 1 [not trustworthy] to 4 [very trustworthy];
and (6) Rank how attractive this person is, on a scale from 1 [not attractive]
to 4 [very attractive]. The rest of the experiment was identical to the earlier
described familiarization block.

The “age” task is the only one with a “ground truth” answer, based on
the four categories of facial images that were used (child, young adult, adult,
elderly). This task allowed us to check that the subjects were engaged in
their tasks since we know the correct response. The other tasks are ones that
humans often engage in as social animals. Previous work has shown that
judgments of emotion (Ekman, 1973; Izard, 1971), fatigue (Sundelin et al.,
2013), trustworthiness and attractiveness (Willis and Todorov, 2006) are re-
liably assessed by observers. There are also subtle differences in observer’s
eye movements during face perception when judging age and fatigue (Nguyen
et al., 2009), suggesting that scanpath routines could be used in these tasks.

2.5. Algorithms.

Most classifiers in machine learning require all input feature vectors to
have a fixed-dimensionality. However, the number of fixations acquired in
each trial is variable-length. The main challenge in MFPA is turning a trial’s
fixation features into a single fixed-dimensionality vector that captures diag-
nostic information. We implemented three primary algorithms for turning
a trial’s scanpath features into a fixed-dimensionality feature vector. An
overview of them is given in Figure 3. We also used four additional combi-
nations formed from those algorithms. The first method is based on using
summary statistics from each trial, and it serves as a baseline. The second
uses the spatial characteristics of the fixations, and the third uses the spatio-
temporal characteristics of the scanpath. The latter two methods are both
based on Fisher vectors. The same classification algorithm is then applied to
each of these feature representations.

During each trial we acquire a sequence of fixation features. For a fixation
t these consist of the (xt, yt) screen coordinates of the location fixated and
the duration dt of the fixation. The data is preprocessed by removing the
first fixation, which is generally at the location of the fixation cross, followed
by centering the fixations onto the stimulus’ screen location. Trials in which
only a single fixation was recorded were discarded, which occurred in less
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Figure 3: An overview of the three three algorithms that we use to turn variable-length
scanpaths into fixed-length vectors that can be used for classification. The summary
statistics method only captures simple temporal statistics about the scanpath. The Fisher
vector method using a GMM captures spatial statistics about where the participant is
looking and for how long. The Fisher vector method using a CD-HMM goes further by
also capturing more complex spatio-temporal information, such as the transitions from one
fixation region to the next. For the Fisher vector methods, PCA is used for dimensionality
reduction. The same classification algorithm, a support vector machine using an RBF
kernel, is used for all three feature representations.

than 0.5% of all trials. This data served as input to each of the MFPA
methods. In a trial with T fixations, we represent its information using the
matrix

Xtrial =
[

x1 x2 ∙ ∙ ∙ xT

]
=




x1 x2 xT

y1 y2 ∙ ∙ ∙ yT

d1 d2 dT



 ,

where each column represents the screen gaze coordinates and fixation du-
ration. We will refer to this representation in our description of the three
primary methods we use to turn Xtrial into a fixed-dimensional representation
that can be used with an off-the-shelf classifier.

The summary statistics method turns a trial’s fixations into a 2-dimensional
feature vector containing the number of fixations in the trial and the mean
fixation duration:

ΦSS (Xtrial) =
[

T 1
T

∑T
t=1 dt

]T
.

Each dimension of this representation is then normalized by dividing by the
standard deviation of the training data. This approach is similar to the
method used by Greene et al. (2012) and later by Kanan et al. (2014).
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The summary statistics algorithm only captures the simplest tempo-
ral statistics, and it ignores all spatial properties and more complex tem-
poral characteristics. The next two methods for turning a trial’s time-
series features into a fixed-dimensionality vector can retain the spatial or
spatio-temporal aspects, and they are both based on the idea of Fisher vec-
tors (Jaakkola and Haussler, 1998; Perronnin et al., 2010). To use Fisher
vectors, a parametric generative model p(X|Θ) is trained, where X is the
training data and Θ are the parameters of the model that have been esti-
mated using maximum likelihood estimation. A trial’s time-series features
Xtrial are turned into a Fisher vector ΦFV by examining how they would
alter the maximum likelihood parameter estimate:

ΦFV (Xtrial) = ∇Θ log p (Xtrial|Θ) .

The dimensionality of this representation depends only on the number of
parameters in Θ, and it is invariant with respect to the length of the time-
series. The idea behind Fisher vectors is that the gradients for two trials
from the same category will be similar.

Before using them as input to a classifier, the Fisher vector features are
normalized in a two-step process that has been shown to be crucial for
achieving state-of-the-art performance with them (Perronnin et al., 2010).
The first step is to take a sign-preserving square root of the features, i.e.,
f (z) = sign (z)

√
|z| is applied element-wise to the features. The second

step is to make the features unit length by dividing by their Euclidean norm.
We use two different generative models with Fisher vectors. We briefly

summarize how to compute them here, but see Perronnin et al. (2010) and van
der Maaten (2011) for further details. The first method is a Gaussian mixture
model (GMM), which will represent the spatial characteristics of a scanpath
without preserving any of its temporal properties. This Fisher vector rep-
resentation has been very successful at object (Perronnin et al., 2010) and
face (Simoyan et al., 2013) recognition problems in computer vision; we are
the first to apply it to eye movement data. To compute these Fisher vectors,
we used the implementation in the MATLAB VLFeat toolbox (Vedaldi and
Fulkerson, 2008), which uses Gaussians with diagonal covariance. The pa-
rameters used to construct Fisher vectors were the means and covariances of
the Gaussians. The mixture weight Fisher vectors are typically not discrimi-
native and were not supported by the toolbox. Formally, a GMM composed
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of K Gaussians is given by the equation,

p (x) =
K∑

k=1

wkN (x|μk,Σk)

where wk are the mixture weights and N (x|μk,Σk) are the Gaussian densities
in the mixture, which each have their own mean μk and diagonal covariance
Σk. The parameters of the GMM are fit to the training data. Example
GMMs are shown in Figure 4. As is standard with Fisher vectors, only
one GMM is learned, regardless of the number of categories that need to
be discriminated. The gradients of the means and covariances are used to
generate the GMM Fisher vectors that summarize the information in a trial.
For simplicity and to be consistent with other recent papers, e.g., Simoyan
et al. (2013), we drop the vector differentials and just give the equations for
computing the Fisher vector features. For each mixture component k, these
are given for the means by

uk =
1

T
√

wk

T∑

t=1

qtkΣ
−1
k (xt − μk)

and for the covariances by

vk =
1

T
√

2wk

T∑

t=1

qtk

[(
Σ−1

k (xt − μk)
)
◦
(
Σ−1

k (xt − μk)
)
− 1
]
,

where T is the number of fixation features in the trial, ◦ represents the
element-wise matrix product (i.e., Hadamard product), 1 is a vector of ones,
and

qtk =
exp

[
−1

2
(xt − μk)

T Σ−1
k (xt − μk)

]

∑K
j=1 exp

[
−1

2
(xt − μj)

T Σ−1
j (xt − μj)

] ,

is the assignment strength the GMM gives the fixation features xt to each
mixture component. The unnormalized GMM Fisher vector for a trial is then
created by concatenating the uk and vk vectors:

ΦGMM (Xtrial) = [u1,v1, . . . , uK ,vK ]T .

This representation is then normalized using the two-step procedure de-
scribed earlier.
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Figure 4: Example GMMs trained on the fixations of three participants shown on an
average face. The top row shows the location of each model’s Gaussians, with the Gaus-
sian’s duration parameter represented by the size of the circle. The bottom row shows the
covariances of the Gaussians’ spatial parameters.

The second generative model we use to compute Fisher vectors is a contin-
uous density hidden Markov model (CD-HMM), i.e., an HMM with Gaussian
emissions. This method will model both the spatial and temporal properties
of a trial’s scanpath features. A CD-HMM has one Gaussian per hidden
state. Fisher vectors with HMMs and CD-HMMs have been used in bioin-
formatics for protein classification (Jaakkola et al., 2000), in computer vision
for activity recognition (Sun and Nevatia, 2013), and in speaker identifica-
tion (Wan and Renals, 2002). For the CD-HMM Fisher vector model, we
used the MATLAB CD-HMM implementation provided by van der Maaten
(2011), and we set it to use diagonal covariance matrices. For the CD-HMM
model, the parameters used to construct Fisher vectors were the means and
covariances of the Gaussians and the state transition matrix. Formally, a
CD-HMM models the joint distribution of a trial’s fixation features X over
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sequences of hidden states s = {s1, s2, . . . , sT} and is given by

p (X, s) = p (s1)
T−1∏

t=1

p (st+1|st)
T∏

t=1

N
(
xt|μst ,Σst

)
,

where p (s1) is the initial hidden state distribution, p (st+1|st) are the state
transition probabilities, and N

(
xt|μst ,Σst

)
are the Gaussian emission den-

sities associated with each hidden state. In CD-HMM Fisher vectors, only
one CD-HMM is learned, regardless of the number of categories that need to
be discriminated. This is because trials belonging to the same category will
presumably change the model in similar ways. CD-HMMs trained on the
fixations of three participants are shown in Figure 5. For a CD-HMM with
K states, a trial’s Fisher vectors for the means of the Gaussians are given by

uk =
1

T

T∑

t=1

γtkΣ
−1
k (xt − μk),

the Fisher vectors for the covariances by

vk =
1

2T

T∑

t=1

γtk

[(
Σ−1

k (xt − μk)
)
◦
(
Σ−1

k (xt − μk)
)
− Σ−1

k 1
]
,

and the elements of the Fisher vector for the state transition matrix by

hkj =
mkj

akj

,

where γtk is the CD-HMM posterior probability over the states given the
observations, mkj is the CD-HMM posterior probability over the transition
edges, and akj is the element of the state transition matrix representing the
probability of transitioning from state k to state j. All of these are then
concatenated to form the CD-HMM Fisher vector representation:

ΦHMM (Xtrial) = [u1,v1, . . . uK ,vK ,h]T ,

where h is all of the hkj elements concatenated into a vector. Subsequently,
we apply the two-step normalization process described earlier to the CD-
HMM Fisher vector.
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Figure 5: Example CD-HMMs trained on the fixations of three participants shown on
an average face. For visualization purposes, we limited the CD-HMMs to at most three
states. The top row shows the location of each model’s Gaussians, with the Gaussian’s
duration parameter represented by the size of the circle and the transition matrix is shown
by arrows (ignoring self-transitions and the strength of the transitions). The bottom row
shows the covariances of the Gaussians’ spatial parameters.

In addition to these three primary feature types (summary statistics,
CD-HMM Fisher vectors, and GMM Fisher vectors), we used all four com-
binations of them by concatenating them together: summary statistics with
GMM Fisher vectors, summary statistics with CD-HMM Fisher vectors,
GMM Fisher vectors with CD-HMM feature vectors, and summary statis-
tics with GMM Fisher vectors and CD-HMM feature vectors. By comparing
these models we can measure the amount of improvement gained by incor-
porating spatial or temporal properties. If the CD-HMM is superior to the
other models or increases their accuracy when combined with them, then
this suggests the temporal order of the fixations provides some diagnostic
information.

Across all of these representations of a trial’s features, the same radial-
basis function support vector machine (SVM) classification algorithm was
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used. We used the LIBSVM toolbox (Chang and Lin, 2011). For all methods
except the summary statistics algorithm, we first reduced the dimensionality
of the feature vectors using whitened principal component analysis (PCA).
While the number of the Gaussians and states influences the dimensionality
of the Fisher vector representations, PCA plays a complimentary role that
has an independent influence on classification accuracy. The width of the
radial-basis functions, SVM cost parameter, number of principal components,
number of clusters (for the GMM model), and number of hidden states (for
the CD-HMM model) were tuned with 4-fold cross validation using the train-
ing data, with the width and cost parameters chosen from 2−8, 2−7, . . . , 28,
number of principal components chosen from 20, 21, . . . , 28 (or fewer, depend-
ing on the dimensionality of the Fisher vector representation), and number
of clusters or hidden states chosen from 1, 2, . . . , 10.

Our data is slightly unbalanced due to trials with only one fixation being
excluded, as described earlier. Because of this, we use a random classifier that
makes random predictions from a uniform distribution to calculate chance
performance in each experiment. If no trials were dropped, then in our
task prediction experiments chance would be 16.67% and in our participant
identity prediction experiment chance would be 4.17%. In all experiments,
the random classifier is very close to these levels.

3. Results

Because we know the age category for all of the stimuli, we can use the
age ranking task to assess how engaged our subjects were during the experi-
ment. We found that participants accurately predicted the age category, with
a mean absolute error of 0.19 (95% CI = 0.14–0.24) in their prediction of the
age group. Since age was ranked from 1 to 4, the maximum possible mean
absolute error is 3, and if participants were randomly guessing it would be
1.25 on average. In trials where subjects incorrectly predicted the age, they
were off by no more than one age category in 99.1% of trials (e.g., misclassify-
ing a young adult as an adult). These statistics suggest our participants were
genuinely trying to do the task. The relative frequency of the ratings for each
task is shown in Figure 6. Participant agreement on the task ratings, mean
number of fixations per trial, and mean reaction time per trial are shown
in Table 1. Since the number of fixations varies among the tasks (e.g., age
vs. trustworthy), this suggests that the summary statistics algorithm will
be sufficient to perform above chance in a between-subjects analysis. Table
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Table 1: Participant agreement computing using the intraclass correlation coefficient, the
mean number of fixations, and the mean reaction times for each task across all participants.
A 95% confidence interval is given for the number of fixations and reaction times. The
tasks in which participant agreement was higher generally required fewer fixations than
for those tasks where it was lower.

Agreement Number of Fixations Reaction Times (s)
Age 0.85 3.05 ± 0.10 1.20 ± 0.03
Happy 0.75 3.59 ± 0.11 1.44 ± 0.04
Angry 0.65 3.67 ± 0.11 1.46 ± 0.03
Tired 0.38 4.29 ± 0.11 1.71 ± 0.03
Trustworthy 0.31 4.23 ± 0.12 1.76 ± 0.04
Attractive 0.30 4.03 ± 0.12 1.56 ± 0.03

Table 2: The frequency of fixations to each face region across participants for each of the
six tasks.

Left Eye Right Eye Nose Mouth
Overall 27.3% 26.1% 30.4% 16.2%
Happy 26.4% 24.6% 29.9% 19.1%
Angry 24.2% 25.9% 30.9% 19.0%
Tired 28.3% 27.0% 29.0% 15.7%
Attractive 28.2% 25.4% 31.6% 14.8%
Trustworthy 29.2% 26.4% 29.7% 14.7%
Age 26.4% 27.3% 32.0% 14.3%

2 shows the frequency of fixations to each face region across participants.
The statistics across tasks differ little, suggesting that a between-subjects
approach using spatial statistics will perform poorly.

Figure 7 shows the density of participant fixation locations across the six
tasks. To generate the density plots, we used a Gaussian kernel density esti-
mation method in which the bandwidth is automatically estimated (Botev,
2006). When the fixations from all participants are combined, we get the
usual “T” shaped pattern of fixations around the eyes and mouth for all of
the tasks. However, there are strong qualitative individual differences among
participants, consistent with the findings of others (Peterson and Eckstein,
2013; Mehoudar et al., 2014), suggesting that we will be able to infer partic-
ipant identity. For each participant, the differences in fixation density across
tasks are subtle. This suggests that inferring the task will be difficult for the
algorithms if restricted to only the gaze coordinates.
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Figure 6: The relative frequency of the four ratings picked by all participants across the
six tasks. Age was closest to a uniform distribution, which is expected since participants
classified age with high accuracy and each age category contained the same number of
face models. Attractive is the farthest from uniform, with participants generally rating
our face models as unattractive.

3.1. Within-Subject Task Prediction

Our first task prediction experiments are within-subject. If we can judge
the task a subject is performing based on their scanpaths, this would suggest
that they have a scanpath routine for the task. For each subject we use leave-
one-out cross validation, i.e., we train all of the methods on 287 trials, test
on the remaining hold-out trial, and repeat this process 288 times. We also
generated labels at random (denoted Random Classifier) to calculate chance,
since the number of trials are slightly unbalanced due to dropped trials. As
shown in Table 3, all of the algorithms performed above chance, with the
summary statistics algorithm performing worst and the combination of all
three methods performing best. This result indicates that it is possible to
discern a participant’s face judgment task at above chance levels solely from
their scanpath.

What role does temporal information play in scanpath routines? Since the
summary statistics model is above chance, this means that simple temporal
regularities exist and are diagnostic. Does incorporating the order of fixations
provide any benefit over a spatial model combined with simple temporal
statistics? While there was no significant difference between the CD-HMM
method compared to the GMM method with summary statistics, t(6877) =
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Figure 7: The distribution of fixations across the six tasks for all participants (first column)
and for three particular participants (remaining columns). Qualitatively, there are strong
individual differences among participants, e.g., participant C primarily looks at the left
eye and mouth whereas participant A primarily looks at both eyes and rarely the mouth.
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Table 3: Mean predictive accuracy and 95% confidence intervals from within-subject ex-
periments for all methods. SS denotes summary statistics method, GMM denotes the
GMM Fisher vector model, and CD-HMM denotes the CD-HMM Fisher vector method.

Method Mean (%) 95% CI
Random Classifier 16.67 15.79–17.56
SS 26.00 24.96–27.05
GMM 31.23 30.14–32.34
CD-HMM 32.41 31.30–33.53
SS + GMM 33.48 32.37–34.61
SS + CD-HMM 33.91 32.79–35.04
GMM + CD-HMM 33.99 32.87–35.13
SS + GMM + CD-HMM 36.30 35.17–37.45

1.62, p = 0.10, we did find that the combination of all three methods was
significantly more accurate than the other models (see Table 3). Moreover,
adding the CD-HMM method to any other method improved accuracy. Taken
together, these results indicate that complex temporal statistics, including
the order of fixations, are incorporated into scanpath routines to a limited
extent since they are of diagnostic value.

We have argued that, because accuracy is above chance, scanpath routines
for judging faces exist. Do we have scanpath routines for all of the tasks in
our study or just a subset of them? We can gain some insight by analyzing
the confusion matrices for the MFPA methods, which are shown in Figure 8.
All of the methods were above chance for all of the tasks, except for angry
with the summary statistics method (16% correct). For the combination
of all three MFPA methods, the age task had the highest accuracy (41%
correct) and angry had the lowest (31% correct). Tasks that are confused
with greater frequency by the algorithms indicate that the scanpath statistics
for the these tasks are more similar than other tasks. For the combination
of all three MFPA methods, this occurred most between happy and angry
as well as attractive and trustworthy. The happy/angry confusion could
indicate that people have a general scanpath routine for classifying emotional
facial expressions, potentially involving more frequently looking at the mouth
than for other tasks (see Table 2). Several studies have shown that human
judgments of appearance and trustworthiness are correlated (Budesheim and
DePaola, 1994; Zaidel et al., 2003; Kleisner et al., 2013), and this may be the
reason why the scanpaths for attractiveness and trustworthiness are more
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Figure 8: Task inference confusion matrices from the within-subjects analysis for all meth-
ods. Each column indicates the predicted category and each row represents the actual class.
SS denotes summary statistics method, GMM denotes the GMM Fisher vector model, and
CD-HMM denotes the CD-HMM Fisher vector method.

frequently confused by the algorithms.
The confusion matrices shown in Figure 8 are averaged across all partic-

ipants, but how similar are the confusion matrices computed for each of the
24 participants? To measure this per algorithm, we treated the task confu-
sion matrix computed for each participant as a vector and then calculated
the intraclass correlation coefficient. The intraclass correlation coefficient was
moderate (0.76) for the summary statistics method, but was high (0.94–0.96)
for all of the other algorithms. This indicates that when the algorithms are
trained on different subjects, they still make the same kinds of confusions.

3.2. Between-Subject Task Prediction

If subjects have scanpath routines for judging faces, do they have the
same scanpath routines across subjects? To the extent that this is the case,
we should be able to tell what a subject is doing from another subject’s
scanpath data. To test this hypothesis, we trained the algorithms on all of
the data from 23 of the 24 participants, and tested on the remaining hold-
out participant. This was repeated 24 times, with each participant serving
as a hold-out. This approach uses 23 times more training data than our
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Table 4: Mean predictive accuracy and 95% confidence intervals from the between-subject
experiments for all methods. SS denotes summary statistics method, GMM denotes the
GMM Fisher vector model, and CD-HMM denotes the CD-HMM Fisher vector method.

Method Mean (%) 95% CI
Random Classifier 16.68 15.80–17.58
SS 22.16 21.18–23.16
GMM 18.19 17.28–19.12
CD-HMM 20.38 19.44–21.36
SS + GMM 19.85 18.91–20.81
SS + CD-HMM 20.94 19.98–21.92
GMM + CD-HMM 20.66 19.71–21.64
SS + GMM + CD-HMM 21.39 20.42–22.38

within-subjects experiments, so if people have universal scanpath routines
for these tasks we would expect performance to be at least as good as our
within-subjects results. As shown in Table 4, all of the algorithms performed
above chance; however, the results are worse than the within-subjects results.
The best method in the between-subjects analysis is 39% worse, in relative
terms, than the best method in the within-subjects analysis. Also, unlike
the within-subjects analysis, no method is better than using the summary
statistics method. Moreover, when the summary statistics method is com-
bined with either the GMM or CD-HMM methods, accuracy is reduced, sug-
gesting they are adding noise to the classifier’s input. These results indicate
that scanpath routines for judging faces are idiosyncratic because spatial and
complex spatio-temporal information provides no benefit over simple sum-
mary statistics. The GMM Fisher vector model performs worst, suggesting
that the spatial distribution of fixations differs among participants. The CD-
HMM model performs significantly better than the GMM method, and this
is likely because the CD-HMM method is implicitly capturing some of the
low-level summary statistics.

3.3. Participant Identity Prediction

Since our within-subjects results are significantly higher than our between-
subjects results, this indicates that people have idiosyncratic scanpaths. To
verify this, we trained classifiers to infer participant identity, i.e., the algo-
rithms were trained on labeled scanpaths from each of the 24 subjects and
given an unlabeled scanpath they would predict which subject generated it.
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Table 5: Mean predictive accuracy and 95% confidence intervals from participant pre-
diction experiments for all methods. SS denotes summary statistics method, GMM de-
notes the GMM Fisher vector model, and CD-HMM denotes the CD-HMM Fisher vector
method.

Method Mean (%) 95% CI
Random Classifier 4.18 4.02–4.35
SS 14.40 14.11–14.69
GMM 52.78 52.37–53.20
CD-HMM 58.64 58.23–59.05
SS + GMM 53.76 53.35–54.18
SS + CD-HMM 58.16 57.75–58.57
GMM + CD-HMM 60.96 60.55–61.36
SS + GMM + CD-HMM 61.79 61.39–62.19

For this experiment, we trained the classifiers using 240 randomly selected
trials per participant (40 per task), and we tested on the remaining trials.
Our results are calculated over 50 random cross-validation runs. As shown in
Table 5, all algorithms performed above chance, with the summary statistics
algorithm performing worst and the combination of all three methods per-
forming best. While the CD-HMM and GMM Fisher vector methods were
comparable in our within-subjects analysis, the CD-HMM method achieved
significantly higher accuracy at participant identification. This indicates that
the temporal regularities in a subject’s scanpaths are indicative of their iden-
tity.

4. Discussion

The experiments we conducted were designed to determine if it was pos-
sible to infer which face inference task a subject was trying to accomplish,
solely from their eye movements. All of the tasks we gave the subjects were
detectable from their scanpaths at a level well above chance. We conclude
from these results that individual humans have scanpath routines for faces
to answer particular questions. However, we cannot conclude that subjects
were using the same scanpath routines for three reasons: (1) performance
was much worse in trying to detect a subject’s task based upon all of the
other subjects’ data, despite using a larger amount of training data, (2) unlike
our within-subject results, no algorithm outperformed the summary statis-
tics method in our between-subject analysis, which means that capturing
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more complex spatio-temporal properties was not helpful, and (3) we were
able to accurately predict participant identity, which should work poorly if
participants are using the same scanpath routines. This finding is consistent
with other reports that human scanpaths are idiosyncratic (Noton and Stark,
1971; Foulsham et al., 2012). While we believe it is possible to develop su-
perior algorithms for MFPA, we do not think that doing so will change our
conclusion that people have scanpath routines for judging faces since this
conclusion is based on the algorithms performing above chance.

We used the Cartesian coordinates of our subject’s fixations as one of the
features given to the classifiers. One of the reasons why this was effective
is that we implicitly used an object-centered coordinate system because we
aligned the face stimuli, so the gaze coordinates contain information about
what facial parts are being fixated. We suspect that performance would
be much poorer if the images were unconstrained. One way to get around
this is to use an explicitly object-centered coordinate system with labeled
areas of interest as features, e.g., for faces this might consist of a vector for
each fixation that indicates if the eyes, nose, or mouth is being fixated. An
alternative is to use features that do not depend on the locations themselves
and only encode relative motor activity, e.g., the direction and distance of
each fixation from the previous fixation location. These representations could
be used with both Fisher vector methods with relatively little effort.

Our definition of scanpath routines includes that they were acquired via
implicit learning in the service of a task. We did not investigate how they
are learned, but it is possible to create artificial tasks in the lab in which
subjects learn efficient scanpaths without verbal instruction. For example,
Rehder and Hoffman (2005) trained subjects to categorize stimuli consisting
of three characters in a triangular array, where each character always ap-
peared in the same location. Each character had two possible values, giving
eight possible exemplars. Subjects were trained using feedback to categorize
the eight exemplars into two equally-sized categories corresponding to one
of the six category types of Shepard, Hovland and Jenkins (1961). Simple
categories depended upon the value of one of the characters, while com-
plex categories could require observing all three characters to classify. Over
time, subjects developed efficient, stereotyped eye movements for the partic-
ular category type. Another example is the Desrochers et al.’s (2010) study.
During each trial of their study, subjects (monkeys) were seated in front of
an array of dots, with one randomly chosen dot providing a reward to the
monkey when it was fixated. After several learning sessions, each monkey
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acquired a stereotyped scanpath that visited all of the dots only once during
each trial. This is more efficient than revisiting dots, but not all paths are
equally efficient at minimizing the amount of time required. For both mon-
keys, this initial scanpath routine gradually became more efficient, but only
one of the monkeys developed the optimal scanpath routine. Both Rehder
and Hoffman (2005) and Desrochers et al. (2010) have been successfully mod-
eled using reinforcement learning algorithms (Desrochers et al., 2010; Nelson
and Cottrell, 2007). Similar mechanisms are thought to be implemented in
the basal ganglia, which enables scanpath routines to be learned in humans
and other animals (Hayhoe and Ballard, 2005; Hikosaka et al., 2000). The
acquisition of efficient scanpath routines in more natural tasks, which lack
artificial constraints, has yet to be studied.

Beyond inferring the task given to a person and their identity, our al-
gorithms could be used to infer other traits. For example, these algorithms
could potentially be used to diagnose Parkinson’s disease or autism spec-
trum disorders, as long as a diagnostic stimuli could be identified to present
to the subject. If this inference could be reliably made, MFPA would offer
a low-cost diagnostic technique (especially since some eye trackers can now
be purchased for less than $100). This approach has already shown success
in predicting schizophrenia, attention deficit hyperactivity disorder, fetal al-
cohol spectrum disorder, and Parkinson’s disease using algorithms similar
to the summary statistics method (Benson et al., 2012; Tseng et al., 2013).
Fisher vector methods that incorporate the spatio-temporal characteristics
of scanpaths directly could lead to further improvements in disease diagnosis
from eye movements.

5. Conclusions

In summary, we provide here the first direct evidence of scanpath routines
for judging faces in humans. Consistent with other studies (Borji and Itti,
2014; Kanan et al., 2014), we found that a subject’s task can be inferred solely
from their eye movements. Our algorithms were most successful when judg-
ing observer’s tasks from their own history of eye movement patterns, from
which we conclude that, at least for these tasks, observers have idiosyncratic
scanpath routines. It should be of considerable interest to further investigate
whether experts in particular tasks converge on the same, optimal scanpath
routines for their areas of expertise.
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