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ABSTRACT 

When people try to find particular objects in natural scenes they make extensive use of 

knowledge about how and where objects tend to appear in a scene.  Although many forms of 

such “top-down” knowledge have been incorporated into saliency map models of visual search, 

surprisingly, the role of object appearance has been infrequently investigated. Here we present an 

appearance based saliency model derived in a Bayesian framework. We compare our approach 

with both bottom-up saliency algorithms as well as the state-of-the-art Contextual Guidance 

model of Torralba et al. (2006) at predicting human fixations. Although both top-down 

approaches use very different types of information, they achieve similar performance; each 

substantially better than the purely bottom-up models. Our experiments reveal that a simple 

model of object appearance can predict human fixations quite well, even making the same 

mistakes as people.
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SUN: Top-down saliency using natural statistics 

The arboreal environments that early primates evolved within demanded keen eyesight to 

support their ability to find targets of interest (Ravosa & Savakova, 2004; Regan et al., 2001). 

The ability to visually search for fruits and other foods while avoiding camouflaged predators 

such as snakes is essential for survival. However, the amount of information in the visual world 

presents a task too overwhelming for the visual system to fully process concurrently (Tsotsos, 

1990). Saccadic eye movements are an overt manifestation of the visual system’s attempt to 

focus the fovea on important parts of the visual world in a serial manner (Henderson, 1992). In 

order to accomplish this feat, numerous brain structures, including visual cortex, the frontal eye 

fields, superior colliculus, the posterior parietal cortex, and the lateral geniculate nucleus 

(O’Connor, 2002) are involved in determining where the next fixation should be directed (Schall, 

2002). These brain regions are thought to compute, or influence the computation of, saliency 

maps which guide eye movements to regions of interest (Koch and Ullman, 1985; see Itti and 

Koch (2001) for a review). 

Although the saliency map was originally intended to model covert attention, it has 

achieved great prominence in models of overt visual attention. In this context, saliency maps 

attach a value to each location in the visual field given the visual input and the current task, with 

regions of higher salience being more likely to be fixated.  This framework has been extensively 

used to model eye movements, an overt form of attentional shift. What makes something salient 

depends on many factors. Generally in the modeling literature it has been assumed a region is 

salient if it differs greatly from its surroundings (Bruce and Tsotsos, 2006; Gao et al., 2007; Itti 

et al., 1998; Rosenholtz, 1999). Our model, SUN (Saliency Using Natural statistics; Zhang et al., 

2007; Zhang et al., 2008), defines bottom-up saliency as deviations from the natural statistics 



 

learned from experience, and is a form of the kind of “novelty” detector useful in explaining 

many search asymmetries (see Wolfe, 2001 for a review of the asymmetries).  

Recently, the ability of purely bottom-up models to predict human fixations during free 

viewing has been questioned.  It is not clear if bottom-up saliency plays a causal role in human 

fixation, even if the correlations between predictions and fixations were stronger (Einhäuser and 

König, 2003; Tatler, 2007; Underwood et al., 2006). However, it has long been clear that 

bottom-up models are inadequate for modeling eye movements when top-down task 

requirements are involved, both intuitively and via some of the earliest studies of eye movements 

(Buswell, 1935; Einhäuser et al., 2008; Hayhoe et al., 2001; Yarbus, 1967). For example, when 

searching for a person in an image, looking for something relatively tall, skinny and on the 

ground will provide a more efficient search than hunting for the scene’s intrinsically interesting 

features.  

Several approaches have attempted to guide attention based on knowledge of the task, the 

visual appearance, or features, of the target. Perhaps the best known is Wolfe’s Guided Search 

model (1994), which modulates the response of feature primitives based on a number of 

heuristics. Others have incorporated top-down knowledge into the computation of a saliency 

map. Gao and Vasconcelos (2005) focus on features that minimize classification error of the 

class or classes of interest with their Discriminative Saliency model.  The Iconic Search model 

(Rao et al., 1995; 1996; 2002) uses the distance between an image region and a stored template-

like representation of feature responses to the known target. Navalpakkam and Itti’s work finds 

the appropriate weight of relevant features by maximizing the signal to noise ratio between the 

target and distracters (2005). Turano et al. (2003) combine basic contextual location and 

appearance information necessary to complete a task, showing vast improvements in the ability 



 

to predict eye movements. The Contextual Guidance model (Ehinger et al., this issue; Oliva at 

al., 2003; Torralba et al., 2006) uses a holistic representation of the scene (the gist) to guide 

attention to locations likely to contain the target, combining top-down knowledge of where an 

object is likely to appear in a particular context with basic bottom-up saliency.  

One of the virtues of probabilistic models is that experimenters have absolute control 

over the types of information the model can use in making its predictions (Geisler & Kersten, 

2002; Kersten & Yuille, 2003). As long as the models have sufficient power and training to 

represent the relevant probability distributions, the models make optimal use of the information 

they can access. This allows researchers to investigate what information is being used in a 

biological system, such as the control of human eye fixations.  

In this paper we examine two probabilistic models, each using different types of 

information, that predict fixations made while counting objects in natural scenes. Torralba et al.’s 

(2006) Contextual Guidance model makes use of global features to guide attention to locations in 

a scene likely to contain the target. Our model, SUN, contains a top-down component that guides 

attention to areas of the scene likely to be a target based on appearance alone. By comparing the 

two approaches, we can gain insight into the efficacy of these two types of knowledge, both 

clearly used by the visual system, in predicting early eye movements.  

 

The SUN framework 

It is vital for animals to rapidly detect targets of interest, be they predators, food, or 

targets related to the task at hand. We claim this is one of the goals of visual attention, which 

allocates computational resources to potential targets for further processing, with the pre-

attentive mechanism actively and rapidly calculating the probability of a target’s presence at 



 

each location using the information it has available. We have proposed elsewhere (Zhang et al., 

2007; Zhang et al., 2008) that this probability is visual saliency.  

Let z denote a point in the visual field. In the context of this paper, a point corresponds to 

a single image pixel, but in other contexts, a point could refer to other things, such as an 

object (Zhang et al., 2007). We let the binary random variable C denote whether or not a point 

belongs to a target class1, let the random variable L denote the location (i.e., the pixel 

coordinates) of a point, and let the random variable F denote the visual features of a point. 

Saliency of a point z is then defined as p(C = 1 | F = fz, L = lz) where fz represents the feature 

values observed at z, and lz represents the location (pixel coordinates) of z. This probability can 

be calculated using Bayes’ rule: 

( 1 | , )

( , | 1) ( 1)
( , )

z z z

z z

z z

s p C F f L l
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After making the simplifying assumptions that features and location are independent and 

conditionally independent given C=1, this can be rewritten as:  

Likelihood Location Prior
Independent Dependent on targetof target (top-down saliency)(bottom-up saliency)
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These assumptions can be summarized as entailing that a feature’s distribution across scenes 

does not change with location, regardless of whether or not it appears on a target.  

SUN can be interpreted in an information theoretic way by looking at the log salience, 

log sz. Since the logarithm is a monotonically increasing function, this does not affect the ranking 

                                            
1 In other contexts, we let C denote the particular class of interest, e.g., people, mugs, or paintings. 



 

of salience across locations in an image. For this reason, we take the liberty of using the term 

saliency to refer both to sz and to log sz, which is given by:   

Self-information: Log likelihood: Location prior:
Bottom-up saliency Top-down knowledge Top-down knowledge

of appearance of target's location

log log ( ) log ( | 1) log ( 1 | )z z z zs p F f p F f C p C L l= − = + = = + = =   

Our first term, -log p(F = fz), depends only on the visual features observed at the point, 

and is independent of any knowledge we have about the target class. In information theory, -log 

p(F = fz) is known as the self-information of the random variable F when it takes the value fz. 

Self-information increases when the probability of a feature decreases—in other words, rarer 

features are more informative. When not actively searching for a particular target (the free-

viewing condition), a person or animal’s attention should be directed to any potential targets in 

the visual field, despite the features associated with the target class being unknown. Therefore, 

the log-likelihood and location terms are omitted in the calculation of saliency. Thus, the overall 

saliency reduces to the self-information term: log sz = -log p(F = fz). This is our definition of 

bottom-up saliency, which we modeled in earlier work (Zhang et al., 2007; Zhang et al., 2008). 

Using this term alone, we were able to account for many psychological findings and outperform 

many other saliency models at predicting human fixations while free-viewing. 

Our second term, log p(F = fz | C = 1), is a log-likelihood term that favors feature values 

consistent with our knowledge of the target’s appearance. The fact that target appearance helps 

guide attention has been reported and used in other models (Rao et al., 1996; Wolfe, 1994). For 

example, if we know the target is green, then the log-likelihood term will be much larger for a 

green point than for a blue point. This corresponds to the top-down effect when searching for a 

known target, consistent with the finding that human eye movement patterns during iconic visual 



 

search can be accounted for by a maximum likelihood procedure which computes the most likely 

location of a target (Rao et al., 2002).  

The third term, log p(C = 1 | L = lz), is independent of the visual features and reflects any 

prior knowledge of where the target is likely to appear. It has been shown that if the observer is 

given a cue of where the target is likely to appear, the observer attends to that location (Posner & 

Cohen, 1984). Even basic knowledge of the target’s location can be immensely useful in 

predicting where fixations will occur (Turano, 2003). 

Now, consider what happens if the location prior is uniform, in which case it can be 

dropped as a constant term. The combination of the first two terms leads to the pointwise mutual 

information between features and the presence of a target: 

Self-information: Log likelihood:
Bottom-up saliency Top-down knowledge Pointwise mutual information 

of appearance 

( , 1)
log ( ) log ( | 1) log

( ) ( 1)
z

z z
z

p F f C
p F f p F f C

p F f p C
= =

− = + = = =
= =

. 

This implies that for known targets the visual system should focus on locations with features 

having the most mutual information with the target class. This is very useful for detecting objects 

such as faces and cars (Ullman, Vidal-Naquet, & Sali, 2002). This combination reflects SUN’s 

predictions about how appearance information should be incorporated into overall saliency, and 

is the focus of the present paper. SUN states that appearance-driven attention should be directed 

to combinations of features closely resembling the target but that are rare in the environment. 

Assuming targets are relatively rare, a common feature is likely caused by any number of non-

targets, decreasing the feature’s utility. SUN looks for regions of the image most likely to 

contain the target, and this is best achieved by maximizing the pointwise mutual information 

between features and the target class. 



 

In the special case of searching for a single target class, as will be the case in the 

experiments we are trying to model, p(C=1) is simply a constant. We can then extract it from the 

mutual information, thus: 

Pointwise mutual information 

( , 1) ( , 1)
log log log ( 1)

( ) ( 1) ( )

log ( 1 | ) log ( 1)
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Hence what we have left can be implemented using any classifier that returns probabilities. 

In summary, SUN’s framework is based on calculating the probability of a target at each 

point in the visual field and leads naturally to a model of saliency with components that 

correspond to bottom-up saliency, target appearance, and target location. In the free-viewing 

condition, when there is no specific target, saliency reduces to the self-information of a feature. 

This implies when one’s attention is directed only by bottom-up saliency, moving one’s eyes to 

the most salient points in an image can be regarded as maximizing information sampling, which 

is consistent with the basic assumption of Bruce and Tsotsos (2006). When a particular target is 

being searched for, as in the current experiments, our model implies the best features to attend to 

are those having the most pointwise mutual information, which can be modeled by a classifier.  

Each component of SUN functionally corresponds to probabilities we think the brain is 

computing. We do not know precisely how the brain implements these calculations, but as a 

functional model, SUN invites investigators to use the probabilistic algorithm of their choice to 

test their hypotheses.  

 



 

Experiment 

When searching for a target in a scene, eye movements are influenced by both the target’s 

visual appearance and the context, or gist, of the scene (Chun & Jiang, 1998). In either case the 

pattern of fixations differs significantly compared to when a person is engaged in free-viewing. 

Although the development of robust models of object appearance is complicated by the number 

of scales, orientations, non-rigid transformations, and partial occlusions that come into play 

when viewing objects in the real world, even simple models of object appearance have been 

more successful than bottom-up approaches in predicting human fixations during a search task 

(Zelinsky et al., 2006). These issues can be evaded to some extent through the use of contextual 

guidance. Many forms of context can be used to guide gaze ranging from a quick holistic 

representation of scene content, to correlations of the objects present in an image, to a deeper 

understanding of a scene.  

Here we examine SUN’s appearance-driven model p(C = 1 | F = fz), denoted  

p(C = 1 | F ) hereafter with other terms abbreviated similarly, and the Contextual Guidance 

model described by Torralba et al. (2006). Our appearance model leaves out many of the 

considerations listed above but nevertheless it can predict human eye movements in task-driven 

visual search with a high level of accuracy. The Contextual Guidance model forms a holistic 

representation of the scene and uses this information to guide attention instead of relying on 

object appearance.  

 



 

Methods 
 
Human data 

We used the human data described in Torralba et al. (2006), which is available for public 

download on Torralba’s webpage. For completeness, we give a brief description of their 

experiment. Twenty-four Michigan State University undergraduates were assigned to one of 

three tasks: counting people, counting paintings, or counting cups and mugs. For the cup- and 

painting-counting groups, subjects were shown 36 indoor images (the same for both tasks), while 

for the people-counting groups, subjects were shown 36 outdoor images. In each of them, targets 

were either present or absent, with up to six instances of the target appearing in the present 

condition. Images were shown until the subject responded with an object count or for 10 

seconds, whichever came first. Images were displayed on an NEC Multisync P750 monitor with 

a refresh rate of 143 Hz and subtended 15.8 deg. × 11.9 deg. Eye-tracking was performed using a 

Generation 5.5 SRI Dual Purkinje Image Eyetracker with a refresh rate of 1000 Hz, tracking the 

right eye.  

 

Stimuli used in simulations 

The training of top-down components was performed on a subset of the LabelMe dataset 

(Russell et al., 2008), excluding the set used in the human experiments and the data from video 

sequences. We trained on a set of 329 images with cups/mugs, and 284 with paintings, and 669 

with people in street scenes. Testing was performed using the set of stimuli shown to human 

subjects.  



 

Contextual Guidance model and implementation 

Torralba et al. (2006) present their Contextual Guidance model, which is a Bayesian 

formulation of visual saliency incorporating the top-down influences of global scene context. 

Their model is 

( ) ( ) ( ) ( ) ( )11, | , | | 1, , | 1, 1|p C L F G p F G p F C L G p L C G p C G−= = = = =  

where G  represents a scene’s global features, a set of features that captures a holistic 

representation or gist of an image. F, C, and L are defined as before. Global features are 

calculated by forming a low dimensional representation of a scene by pooling the low-level 

features (the same composing F) over large portions of the image and using principal component 

analysis (PCA) to reduce the dimensionality further. The ( ) 1|p F G −  term is their bottom-up 

saliency model and the authors approximate this conditional distribution with ( ) 1p F − , using the 

statistics of the current image (a comparison of this form of bottom-up saliency with SUN’s was 

performed in (Zhang et al., 2008)). The remaining terms are concerned with top-down influences 

on attention. The second term, ( )| 1, ,p F C L G= , enhances features of the attended location L  

that are likely to belong to class C  in the current global context. The contextual prior term 

( )| 1,p L C G=  provides information about where salient regions are in an image when the task 

is to find targets from class C . The fourth and final term ( )1|p C G=  indicates the probability 

of class C  being present within the scene given its gist. In their implementation both 

( )| 1, ,p F C L G=  and ( )1|p C G=  are omitted from the final model. The model that remains is 

  p(C =1, L | F,G) ≈ p(F)−1 p(L |C =1,G) , which combines the bottom-up saliency term with 

the contextual priors in order to determine the most salient regions in the image for finding 



 

objects of class C . To avoid having saliency consistently dominated by one of the two terms, 

Torralba et al. apply an exponent to the local saliency term: 

( 1, | , ) ( ) ( | 1, )p C L F G p F p L C Gγ−= ≈ = , where γ  is tuned using a validation set. 

Our use of Bayes’ rule to derive saliency is reminiscent of the Contextual Guidance 

model’s approach, which contains components roughly analogous to SUN’s bottom-up, target 

appearance, and location terms. However, aside from some semantic differences in how overall 

salience is defined, the conditioning of each component on a coarse description of the scene, the 

global gist, separates the two models considerably. SUN focuses on the use of natural statistics 

learned from experience to guide human fixations to areas of the scene having an appearance 

similar to previously observed instances of the target, while the Contextual Guidance model 

guides attention to locations where the object has been previously observed using the scene’s 

gist. Although both probabilistic models rely on learning the statistics of the natural world from 

previous experience, the differences between the formulations affect the meaning of each term, 

from the source of statistics used in calculating bottom-up saliency to how location information 

is calculated. 

As was done in Torralba et al. (2006), we train the gist model ( | 1, )p L C G=  on a set 

formed by randomly cropping each annotated training image 20 times, creating a larger training 

set with a more uniform distribution of object locations. One difference from Torralba et al. 

(2006) is that we use a non-parametric bottom-up salience model provided to us by Torralba that 

performs comparably to the original, but is faster to compute. Otherwise, we attempted to be 

faithful to the model described in Torralba et al. (2006). For our data, the optimal γ was 0.20, 

which is different than what was used in Torralba et al. (2006), but is within the range that they 

found had good performance. Our re-implementation of the Contextual Guidance model 



 

performs on par with their reported results; we found no significant differences in the 

performance measures. 

 

SUN Implementation 

Recall when looking for a specific target, guidance by target appearance is performed 

using the sum of the self-information of the features and the log-likelihood of the features given 

a class. Although we developed efficient ways of estimating the self-information of features in 

earlier work (Zhang et al., 2008), accurately modeling log p(F |C = 1) or p(F, C = 1) for high 

dimensional feature spaces and many object classes is difficult. Instead, as described above, we 

extract the log p(C=1) term (equations repeated here for convenience), which results in a 

formulation easily implementable as a probabilistic classifier:  

Pointwise mutual information 

( , 1) ( , 1)log log log ( 1)
( ) ( 1) ( )

log ( 1| ) log ( 1)

log ( 1| ) const.

p F C p F C p C
p F p C p F

p C F p C

p C F

= =
= − =

=

= = − =

= = +

. 

The probabilistic classifier we use is a support vector machine (SVM) modified to give 

probability estimates (Chih-Chung & Chih-Jen, 2001).  SVMs were chosen for their generally 

good performance with relatively low computational requirements. An SVM is simply a neural 

network with pre-defined hidden unit features that feed into a particularly well-trained 

perceptron. The bottom-up saliency term, -log p(F), is still implicitly contained in this model. 

For the remainder of the paper, we omit the logs for brevity since as a monotonic transform it 

does not influence saliency. 

The first step in our algorithm for ( )1|p C F=  is to learn a series of biologically inspired 

filters that serve as the algorithm’s features. In SUN’s bottom-up implementation (Zhang et al., 



 

2008), we used two different types of features to model ( ) 1p F − : difference of Gaussians at 

multiple scales and filters learned from natural images using independent component analysis 

(ICA; Bell & Sejnowski, 1995, Hyvärinen & Oja, 1997). Quantitatively, the ICA features were 

superior, and we use them again here. When ICA is applied to natural images, it yields filters 

qualitatively resembling those found in visual cortex (Bell & Sejnowski, 1997; Olshausen & 

Field, 1996). The FastICA algorithm2 (Hyvärinen & Oja, 1997) was applied to 11-pixel ×  11-

pixel color natural image patches drawn from the Kyoto image dataset (Wachtler et al., 2007). 

This window size is a compromise between the total number of features and the amount of detail 

captured. We used the standard implementation of FastICA with its default parameters. These 

patches are treated as 363 (11 11 3× × ) dimensional feature vectors normalized to have zero mean. 

After all of the patches are extracted, they are whitened using PCA, where each principal 

component is normalized to unit length. This removes one dimension due to mean subtraction, 

resulting in 362 ICA filters of size 11 11 3× × . When used this way, ICA permits us to learn the 

statistical structure of the visual world. This approach has been used in biologically inspired 

models of both face and object recognition (Shan & Cottrell, 2008) and visual attention (Bruce 

and Tsotsos, 2006; Zhang et al., 2008).  

To learn ( )1|p C F= , we find images from the LabelMe dataset (Russell et al., 2008) 

containing the current class of interest, either people, cups, or paintings. Each image is 

normalized to have zero mean and unit standard deviation. Using the target masks in the 

annotation data, 3d d× ×  square training patches centered on the object are cropped from the 

images, with each patch’s size d chosen to ensure the patch contains the entire object. Random 

square patches of the same size are also collected from the same images, which serve as 

                                            
2 Software available at http://www.cis.hut.fi/projects/ica/fastica/ 



 

negative, background examples for 0C = . These came from the same images used to train the 

Contextual Guidance model. In selecting positive training example patches from the image set, 

our algorithm ignored objects that consumed over 50% of the training image (permitting 

negative examples to be taken from the same image) or less than 0.2% of the image (which are 

too small to extract reliable appearance features). Given the large number of images containing 

people in street scenes, we chose 800 patches of people randomly from those available. This 

resulted in 800 patches of people (533 negative examples3), 385 patches of mugs (385 negative 

examples), and 226 patches of paintings (226 negative examples).  

We apply our filters to the set of patches, resizing the filters to each patch’s size to 

produce one response from each filter per patch. We multiply each response by   112 / d 2  to make 

the responses invariant to d’s value and then take the absolute value to obtain its magnitude. The 

dimensionality of these responses was reduced using PCA to 94 dimensions, a number chosen by 

cross-validation as explained next.  

Three probabilistic SVMs (Chih-Chung & Chih-Jen, 2001) were trained, using the ν -

SVC algorithm (Scholkopf et al., 2000) with a Gaussian kernel, to discriminate between 

people/background, paintings/background, and mugs/background. The number of principal 

components, the same for each SVM, and the kernel and ν  parameters for each of the SVMs 

were chosen using 5-fold cross validation using the training data. The number of principal 

components was chosen to maximize the combined accuracy of the three classifiers. The kernel 

and ν  parameters of the three SVMs were independently selected for a given number of 

principal components. We did not tune the classifiers’ parameters to match the human data. Even 

                                            
3 Due to the limited memory capacity of the development machine, the number of background examples for each 

class was chosen to be at most ( )800 2 / 3 533=⎢ ⎥⎣ ⎦  per object class. 



 

though our appearance based features are quite simple, the average cross-validation accuracy 

across the three classifiers on the training patches was 89%. 

Since the scale at which objects appear varies greatly, there is no single optimal scale to 

use when applying our classifier to novel images. However, objects do tend to appear at certain 

sizes in the images. Recall that we re-sized the filters based on the patch size, which was in turn 

based on the masks people placed on the objects. Hence we have a scale factor for each training 

example. Histogramming these showed that there were clusters of scales that differed between 

the three classes of objects. To take advantage of this information and speed up classification, we 

clustered the resizing factors by training a one dimensional Gaussian mixture model (GMM) 

with three Gaussians using the Expectation-Maximization algorithm (Dempster, Laird, & Rubin, 

1977). The cluster centers were initialized using the k-Means++ algorithm (Arthur & 

Vassilvitskii, 2007). The three cluster centers found for each class are used to resize the filters 

when computing ( )1|p C F= . By learning which scales are useful for object recognition, we 

introduce an adaptive approach to scale invariance, rather than the standard approach of using an 

image pyramid at multiple octaves. This lets us avoid excessive false positives that could arise in 

the multiple octave approach. For example, at a very coarse scale, a large filter applied to an 

image of a person visiting an ancient Greek temple would probably not find the person salient, 

but might instead find a column that looks person-like.   

 

 



 

 

Figure 1. The three Gaussian mixture model densities learned from the size of the objects in the 
training data. When searching for a particular object, the cluster centers, indicated by filled 
circles, are used to select the scales of the ICA filters used to extract features from the image. 
Note that since the inverse values are clustered a value of 0.1 corresponds to enlarging the 
original ICA filters to 110 110 3× ×  while a value of 0.8 only enlarges the filter slightly to 
14 14 3× × .  

 

To calculate ( )1|p C F=  for a test image I, we preprocess the image in the same way as 

the training images. First we normalize I to have zero mean and unit variance, then we apply the 

three scale factors indicated by the cluster centers in the GMM for the object class. For each of 

our three scales, we enlarge the ICA filter according to the cluster’s mean and normalize 

appropriately.  We convolve each of these filters with the image and take the absolute value of 

the ICA feature response. These responses are projected onto the previously learned principal 

components to produce a 94 dimensional feature vector.  The SVM for class C provides an 

estimate of ( )1| ,p C F S s= =  for each scale s. This procedure is repeated across the image for 

all three scales. Each of the maps at scale s is then smoothed using a Gaussian kernel with a half-

amplitude spatial width of 1 degree of visual angle, the same procedure that Torralba et al. 

(2006) used to smooth their maps in order to approximate the perceptual capabilities of their 

human subjects.  Combining the probability estimates from the three scales at each location is 



 

done by averaging the three estimates and smoothing the combined map again using the same 

Gaussian kernel. This helps ensure the three maps are blended smoothly. Smoothing also 

provides a local center of mass, which accounts for the finding that when two targets are in close 

proximity saccades are made to a point between the two salient targets, putting both in view 

(Deubel et al., 1984; Findlay, 1983). The same SVM classifier is used for each of the three 

scales.  

Results 
In order to compare the ability of SUN’s appearance-based saliency model and the 

Contextual Guidance model of Torralba et al. (2006) to predict human fixations we have adopted 

two different performance measures. Our first measure is the same as used in Torralba et al. 

(2006): it evaluates the percentage of human fixations being made to the top 20 percent most 

salient regions of the saliency map for each subject’s first five fixations. Our second measure of 

performance is the area under the ROC curve (AUC). It eliminates the arbitrary nature of the 20 

percent threshold evaluation, assessing the entire range of saliency values and revealing the 

robustness of a particular approach. With this metric, pixels are predicted to be attended or 

unattended based on whether they are above or below the current saliency threshold; plotting the 

hit and false alarm rates through all thresholds creates an ROC curve, with the area under the 

ROC curve being a measure of a model’s ability to predict human fixations (Bruce and Tsotsos, 

2006; Tatler et al., 2005). However, the patterns of performance with this second metric 

remained the same as with the first, so we focus on the first in our discussion (see Figure 3b for 

AUC data). 

 



 

 

Figure 2. Gaussians fit to the eye movements of subjects viewing these scenes while performing 
these tasks. Data for eye movements came directly from the test set. By treating these as saliency 
masks, we can assess the performance of a model that solely makes use of the kinds of eye 
movements people make performing these tasks. 

 

Due to the tendency of people to fixate near the center of the screen in free-viewing 

experiments, it is frequently the case that a Gaussian (or other function decreasing with 

eccentricity) tuned to the distribution of human fixations will outperform state-of-the-art bottom-

up saliency algorithms (Le Meur, Le Callet, & Barba, 2007; Tatler, Baddeley, & Gilchrist, 2005; 

Tatler, 2007; Zhang et al., 2008). Instead of compensating for these biases as was done in Tatler 

(2005) and Zhang et al. (2008), we instead assessed whether performance was greater than what 

could be achieved by merely exploiting them. We examined the performance of a Gaussian fit to 

all of the human fixations in the test data for each task.  Each Gaussian was treated as a saliency 

map and used to predict the fixations of each subject. Since this includes the current image, this 

may be a slight overestimate of the actual performance of such a Gaussian. As shown in Figure 

3a, there is no significant difference between our implementation of Torralba et al.’s bottom-up 

saliency and the Gaussian blob (t(107)= 1.391, p = 0.0835). Furthermore, all methods 

incorporating top-down knowledge outperformed the static Gaussian (t(107) = 5.149276, p < 

0.00001 for contextual guidance, t(107) = 6.356567, p < 0.0001 for appearance).  

To evaluate how consistent the fixations are among subjects, we determined how well the 

fixations of seven of the subjects can predict the fixations of the eighth using the procedure of 

Torralba et al. (2006). This was done by creating a mixture of Gaussians, with a Gaussian of one 



 

degree of visual angle placed at each point of fixation for first five fixations from seven of the 

subjects, to create a map used to predict where the eighth will fixate. We use the same 

performance measure described earlier. Figures 3 and 4 include these results and Figures 5 

through 8 include subject consistency maps made using this approach. 

We find appearance provides a better match to the human data, with the overall 

performance of SUN’s appearance model outperforming the contextual-guidance model when 

their performance on each task-image pair is compared (t(107) = 2.07, p < 0.05). Surprisingly, 

even though the two models of task-based saliency differ considerably in the kind of information 

they use they both perform similarly overall, with most differences losing statistical significance 

when a smaller number of images are used in finer levels of analysis (e.g. over tasks or 

individual fixations). 

  



 

a) 

b)

 

Figure 3. Overall performance in predicting human gaze, across all images and tasks. See the 
text for a description of the models. a) Performance assessed by looking at the percentage of 
fixations falling within the top 20 percent most salient regions of each image. b) Performance 
assessed by looking at the area under the ROC curve.  

 



 

 

Figure 4. Performance of each model by task and condition. The condition refers to whether or 
not at least one instance of the target was present. The three tasks were counting people, 
paintings, and cups. The text provides a description for the six models presented. The 
performance scores indicate what percentage of fixations fell within the top 20 most salient 
regions for each image. 
 

 

 



 

 

Figure 5.  The human fixations and saliency maps produced during a search for paintings. Light 
grey (yellow), grey (green), and dark grey (blue) correspond to the top 10, 20, and 30 percent 
most salient regions respectively. Note that the horizontal guidance provided by contextual 
guidance is particularly ill-suited to this image, as the attention of both the human subjects and 
the appearance model is focused on the vertical strip of painting-like wallpaper paper between 
the two windows. This figure was selected by identifying images where the Contextual Guidance 
model and SUN most differed. 



 

 

Figure 6. The human fixations and saliency maps produced during a search for cups. Contextual 
guidance outperformed appearance modeling on this image, although it does not capture the two 
distinct regions where cups seem most likely two appear. Note than both human subjects and the 
attention-guidance system are drawn to the cup-like objects above the fireplace. As in Figure 5, 
light grey (yellow), grey (green), and dark grey (blue) correspond to the top 10, 20, and 30 
percent most salient regions respectively, and this figure was also selected by identifying images 
where the Contextual Guidance model and SUN most differed. 



 

However, great insight can be gained on the strengths and weaknesses of the two 

approaches by examining the kinds of saliency maps they produce in greater detail. In order to 

examine this question, we computed the Euclidean distance between the salience map for each 

image and task between the Contextual Guidance model ( ( ) 1| , ( | )p L C G p F G − )  and SUN 

( ( | )p C F ). In Figures 5 and 6, we show two of the maps where the disagreement is large. As can 

be seen from these images, in these cases, the gist model tends to select single horizontal bands 

(it is restricted to modeling L along the vertical dimension only) making it difficult to model 

human fixations that stretch along the vertical dimension, or are bimodal in the vertical 

dimension. Our appearance model has no such restriction and performs well in these situations. 

However, these are both limitations of the Contextual Guidance model as implemented, and not 

necessarily with the concept of contextual guidance itself.  

In Figure 7, we show a case of maximal agreement. Here, the images tend to be 

“canonical” in that the objects of interest are well-described by a horizontal band, and hence both 

models can capture the salient regions. Furthermore, most of the interesting textures are confined 

to a small region of the scene, so even purely bottom-up methods perform comparably.  

While the predictions of the Contextual Guidance and our appearance model generally 

coincide quite well with the human data, some differences are visually apparent when comparing 

the maps. This is partially due to thresholding them for display purposes – black regions are not 

expected to be devoid of fixations, but the models do predict that other regions are more likely to 

be attended. Additionally, the images in Figures 5 and 6 were chosen as examples where 

appearance and context differed most, suggesting that these images may be particularly 

interesting or challenging. However, the subject consistency results in Figures 3 and 4 



 

demonstrate that both models are far from sufficient and must be improved considerably before a 

complete understanding of fixational eye movements is achieved.  

 

 

 

Figure 7. The human fixations and saliency maps produced during a search for people. Here the 
various models largely agree upon the most salient region of the image. This figure was selected 
by identifying the image where the Contextual Guidance model and SUN are most similar. As in 
Figure 5-6, light grey (yellow), grey (green), and dark grey (blue) correspond to the top 10, 20, 
and 30 percent most salient regions respectively. 

 



 

 

 

Figure 8. When instructed to find paintings and shown this image, the subjects fixate the 
television embedded in the cabinet, since it qualitatively looks very much like a painting. SUN 
makes a similar mistake. 
 

The images in Figures 6 and 8 show the appearance model’s “hallucinations” of potential 

targets. In Figure 6, there are several objects that might be interpreted as cups and attract gaze 

during a cup search. In Figure 8, the model confuses the television embedded in the cabinet with 

a painting, which is the same mistake the subjects make. Torralba et al. (2006) predicted 

appearance will play a secondary role when the target is small, as is the case here where targets 

averaged one degree visual angle for people and cups. In support of this prediction, they 

evaluated the target masks as a salience model, and found the target’s location was not a good 

indicator of eye fixations. What was missing from this analysis is that an appearance model can 

capture fixations that would be considered false alarms under the “fixate the target” goal 

assumed by using the target’s locations. Both our model and the subjects’ visual attention are 

attracted by objects that appear similar to the target. In this experiment, appearance seemed to 

play a large role in guiding humans fixations, even during early saccades (we report averages 

over the first five) and the target absent condition. 

We also evaluated how well the task-based models compare to purely bottom-up models. 

The appearance model of SUN and the Contextual Guidance model both perform significantly 



 

better than the Torralba et al. (2006)  bottom-up saliency model (t(107)= -6.440620, p<0.0001 

for contextual guidance, t(107)= -7.336285, p < 0.0001 for appearance).  The top-down models 

also perform significantly better than SUN’s bottom-up saliency model that was outlined in the 

Framework section. Since the two bottom-up models perform comparably on this task (t(107)= -

1.240, p = 0.109)) and SUN’s bottom-up component is not of particular interest in the current 

work, we use the bottom-up component of the Contextual Guidance model in our comparison. 

See (Zhang et al., 2008) for a discussion of how these two models of saliency relate.  

Finally, we evaluated how the full SUN model would perform when the location term 

was included. The LabelMe set provides an object mask indicating the location of each object. 

We fit a Gaussian with a diagonal covariance matrix to each relevant mask and then averaged the 

Gaussian responses at each location, after adjusting appropriately to the scale of a given image. 

The resulting masks provide an estimation of p(L|C). The term p(C|L) is simply p(L|C) times 

p(C)/p(L), which is constant over an image and does not affect overall salience. We see that its 

inclusion improves our overall performance significantly (t(107) = 5.105662, p < 0.0001). We 

intend to explore these findings further in future work. 

 

 

Discussion 

The experiments we conducted were designed to elucidate the similarities and differences 

between two models of visual saliency that are both capable of modeling human gaze in a visual 

search task involving finding and counting targets. Our results support previous findings 

showing models of bottom-up attention are not sufficient for visual search (Einhäuser et al., 

2008; Henderson et al., 2007), and that when top-down knowledge is used, gaze can be better 



 

predicted (Torralba et al., 2006; Zelinsky et al., 2006). Although SUN performs significantly 

better than our re-implementation of the Contextual Guidance model, the differences are small, 

and both models can assuredly be improved. This coincides well with the results reported by 

Ehinger et al. in this issue. It is still unclear which plays a larger role when performing visual 

search in images of real world scenes, appearance or contextual information; presumably, a 

combination of both could be better than either alone.  

We provide computational evidence rejecting the assertion of Torralba et al. (2006) that 

appearance plays little role in the first few fixations when the target is very small. Their claim 

was based partly on the limitations of the human visual system to detect small objects, 

particularly in the periphery. In support of this hypothesis, they found using the labeled regions 

(e.g., the area labeled “painting”) as the salience model does not completely predict where 

people look. What their analysis overlooks is that the regions of the image containing targets 

cannot predict fixations in regions of the image that look like targets. Our coarse features capture 

the kind of similarity that could be computed by peripheral vision, resulting in the assignment of 

high salience to regions having an appearance similar to the target object class, allowing an 

appearance model to predict eye movements accurately even in the target-absent condition. The 

most recent version of the Contextual Guidance model (Ehinger et al., this issue) incorporates 

object appearance (their target-feature model), and they find its performance is about the same as 

bottom-up saliency in the target absent condition using a dataset consisting of pedestrians in 

outdoor scenes . This may be because they used a sophisticated pedestrian detection algorithm in 

contrast to our coarse features, but a deeper investigation is needed. 

 In this work, we did not use the standard image pyramid with scales being separated by 

octaves, which has been the standard approach for over twenty years (Adelson et al., 1984). 



 

However, an image pyramid does not seem appropriate in our model since an object's 

representation is encoded as a vector of filter responses. Besides wasting computational 

resources, using arbitrary scales can also lead to almost meaningless features during 

classification since the test-input is so different from the input the classifier was trained with. 

Instead, we learned which scales objects appear at from the training data. Torralba and Sinha 

(2001) use a similar approach to learn which scales should be used, except their model performs 

a regression using scene context to select a single scale for a target class. SUN’s scale selection 

may have been impaired since the distribution of object sizes in the training set is not the same as 

in the test set, which generally contains smaller objects. However, remedying this by screening 

the training data would be contrary to the importance we place on learning natural statistics. 

Both SUN’s appearance model and the Contextual Guidance model suffer from several 

noticeable flaws. In both models a separate module is learned for each object class. This is 

especially a problem for SUN. Humans have the ability to rule out objects after fixating them 

because they can be identified. Our classifiers are only aware of how the object class they are 

trained on differs from the background. Hence, when searching for mugs, the mug model has not 

learned to discriminate paintings from mugs, and so it may produce false alarms on paintings. 

The use of a single classifier for all classes would remedy this problem; however, current state-

of-the-art approaches in machine learning (e.g. SVMs) are not necessarily well suited for 

learning a large number of object classes. A one-layer neural network with softmax outputs 

trained on all the classes may be a feasible alternative, as its parameters scale linearly with the 

number of classes.  

In future work, we intend to investigate how different types of top-down (and bottom-up) 

knowledge can be combined in a principled way. In Torralba (2006), a fixed weighting 



 

parameter is used between bottom-up and top-down knowledge, but it seems unlikely that 

different types of top-down knowledge should be always weighted the same way. If searching 

for a target with an unreliable appearance but a consistent location, it seems reasonable to weight 

the location information higher. A method of dynamically selecting the weight depending on the 

task, visual conditions, and other constraints is likely to significantly improve visual saliency 

models.  

Another important enhancement needed by many saliency models is the explicit 

incorporation of a retina to model scanpaths in scenes. This has been investigated a few times in 

models using artificial stimuli (Najemnik & Geisler, 2005; Renninger et al., 2005; Renninger et 

al., 2007) with each fixation selected to maximize the amount of information gained. Currently 

SUN produces a static saliency map, with equal knowledge of all parts of the image. 

Incorporating foveated vision would better model the conditions under which we make eye 

movements. Likewise, using experiments freed of the monitor would increase the realism of the 

experimental environment (e.g. Einhäuser et al., 2007); currently our findings are restricted to 

images displayed on a screen, and it is unclear how well they will generalize. 

In conclusion, we have described and evaluated two distinct top-down visual attention 

models which both excel at modeling task-driven human eye movements, especially compared to 

solely bottom-up approaches, even though the type of top-down information each uses is 

considerably different. However, comparing the modeling results with human data it is clear that 

there is much room for improvement. Integrating appearance, location, and other pieces of top-

down information is likely to further improve our ability to predict and understand human eye 

movements. The probabilistic frameworks we examined are powerful tools in these 

investigations, allowing investigators to develop models with tightly controlled information 



 

access and clearly stated assumptions permitting hypotheses about the information contributing 

to eye movement control and visual attention to be readily evaluated.
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