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Abstract

Mammals rely on vision, audition, and olfaction to remotely sense stimuli in their environment. Determining how the
mammalian brain uses this sensory information to recognize objects has been one of the major goals of psychology and
neuroscience. Likewise, researchers in computer vision, machine audition, and machine olfaction have endeavored to
discover good algorithms for stimulus classification. Almost 50 years ago, the neuroscientist Jerzy Konorski proposed a
theoretical model in his final monograph in which competing sets of ‘‘gnostic’’ neurons sitting atop sensory processing
hierarchies enabled stimuli to be robustly categorized, despite variations in their presentation. Much of what Konorski
hypothesized has been remarkably accurate, and neurons with gnostic-like properties have been discovered in visual, aural,
and olfactory brain regions. Surprisingly, there have not been any attempts to directly transform his theoretical model into a
computational one. Here, I describe the first computational implementation of Konorski’s theory. The model is not domain
specific, and it surpasses the best machine learning algorithms on challenging image, music, and olfactory classification
tasks, while also being simpler. My results suggest that criticisms of exemplar-based models of object recognition as being
computationally intractable due to limited neural resources are unfounded.
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Introduction

We can recognize thousands of object categories using our

senses [1]. While our ability to quickly do this seems effortless,

computer scientists have yet to construct algorithms that rival our

capabilities [1]. The best algorithms are often domain specific and

combine many types of engineered features. But while computer

scientists have only been working on these problems since the

1960s, our brains have been forged by evolution over millions of

years. Our ancestors needed to remotely recognize stimuli using

vision, audition, and olfaction to find food, identify mates, and

cope with predators. To do these tasks, the mammalian brain

hierarchically processes sensory information, enabling stimuli to be

classified into general categories despite non-relevant stimulus

variation. For example, we can recognize our mother’s face from

others despite changes in viewpoint, distinguish between the voices

of our friends when they are shouting or whispering, and identify

the scent of a mango even as the intensity of its odor varies as it

ripens.

In his final monograph, the theoretical neurobiologist Jerzy

Konorski developed a rich theory for how the brain accomplishes

invariant stimulus recognition across sensory modalities, including

olfaction, vision, audition, and gustation [2]. I call his proposal

Gnostic Field Theory. Konorski hypothesized that an object

category is represented in the brain by a redundant set (files) of

gnostic neurons (units), which sit near the top of a sensory

processing hierarchy for a given modality. Each gnostic neuron is

tuned to a complex stimulus-pattern from a particular category. A

gnostic set contains a population of gnostic units all tuned to

recognize the same category. Gnostic fields are populations of

competing gnostic sets, which enable discrimination among

categories.

Gnostic neurons have been claimed to be similar to Lettvin’s

grandmother cells (e.g., [3,4]) and both are ‘‘localist’’ representa-

tions. However, there are notable differences between the two

theories. In grandmother cell theory, only a single neuron sitting

on top of a sensory processing hierarchy categorizes a particular

object class, and this neuron is only active when it detects a pattern

consistent with the object class it is tuned to recognize [4]. It is

important to note that this definition is not universally agreed

upon, and some define grandmother cells to be more similar to

gnostic units, e.g., [5]. Gnostic Field Theory posits a redundant

population of gnostic neurons exists near the top of a sensory

processing hierarchy, which are most active when exposed to

stimuli from the category they represent. They may still exhibit

attenuated activity when exposed to stimuli from other categories,

and Konorski states that when trying to categorize an unfamiliar

stimulus into a known category the activity of the entire gnostic

field will increase. However, gnostic neurons alone are not

sufficient to enable robust categorization. The population of

gnostic neurons representing a category are organized into a

gnostic set, and gnostic sets act as competing sub-networks within a

gnostic field [2]. Although there was no electrophysiological

evidence for gnostic neurons when they were first proposed,

neurons with similar properties have since been discovered in the

visual [6,7], aural [8,9], and olfactory [10] systems.
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The neural mechanisms used to classify stimuli have been most

studied in the primate visual system, especially the mechanisms

used by the ventral ‘‘object recognition’’ pathway from primary

visual cortex (V1) to inferior temporal cortex (IT). The standard

model is a hierarchy of increasingly complex representations

[2,11] beginning with simple cells in V1 that respond to edges and

bars. As predicted by Konorski [2,3], IT contains neurons tuned to

views of specific objects [6,7] and there is evidence of neurons with

similar properties in medial temporal lobe (MTL) [12,13]. These

neurons respond vigorously to specific object categories and many

are tolerant to changes in appearance, scale, and location in the

visual field. Most exhibit an attenuated response to other stimuli,

ruling out grandmother cell coding, but not gnostic neuron coding.

In humans, gnostic fields for faces, places, and tools have been

discovered using functional imaging (see [14] for a review), in

largely the same locations Konorski predicted.

Olfactory and aural stimuli are also processed by a hierarchy of

brain regions, with gnostic-like activity at the top levels. For

sounds, both conspecific ‘‘call detector’’ neurons [8] and neurons

responding to the vocal signatures of familiar individuals have

been found in monkey prefrontal cortex [9]. Functional neuroim-

aging of humans places the gnostic field for recognizing familiar

odors in piriform cortex [15], and rat piriform neurons exhibit

activity consistent with gnostic neurons [10].

Here, I develop the first computational implementation of

Konorski’s universal theory of recognition across sensory modal-

ities, enabling its effectiveness to be evaluated. I apply the model to

large many-category recognition tasks using publicly available

image, sound, and odor data sets. The same model can be used for

both categorization and identification. From a computational

perspective, the model is simple, and the architecture could

conceivably be implemented by a biological nervous system. A

high-level schematic of an olfactory gnostic field for discriminating

among apples, mangos, and oranges is presented in Fig. 1.

The inputs to a gnostic field are high-dimensional features that

may have been segregated into multiple channels, e.g., for vision

they consist of oriented edge and bar detectors from luminance

and opponent-color channels. Each channel’s features are

normalized using a whitening transformation [16], a form of

decorrelation approximately performed by early visual [17], aural

[18], and olfactory sensory systems [19]. These normalized

features project to a bank of gnostic sets. There is one gnostic

set per category and channel combination, and each gnostic set

processes data either spatially or temporally locally. The units in a

gnostic set act as pattern detectors for category-specific features

from across the visual field or over time for sounds and odors.

These units are most active when they recognize their input as

belonging to their category. The output of a gnostic set is given by

the unit in the set with the largest activity. This is known as max

pooling [11], and it enables a gnostic set to measure the similarity

of a pattern to previously observed variants from the object

category. This approach differs significantly from the distributed

representations that are often used in neural networks [5,20], since

the categorical processing is segregated into distinct sub-networks

early in the model.

The gnostic sets also compete with each other, with the least

active sets being suppressed. While some of the ideas in my

implementation have been independently explored in recent

models of object recognition, the role Konorski posits for

competition among gnostic sets has not been explicitly modeled.

Having gnostic sets compete helps cope with one of the main

criticisms of grandmother cell theories, which is that the brain

would need an enormous population of neurons devoted to

encoding all possible variations of a given category [5,21]. With

competitive normalization, a gnostic unit only partially matching

Figure 1. Example olfactory gnostic field. A high-level depiction of the model presented in this paper applied to classifying apples, mangos, and
oranges using smell. The olfactory features are acquired over time, and at each time step they are decorrelated and whitened to normalize the
signal’s variance. These feature processing steps are hypothesized to occur in the olfactory bulb. Temporally local olfactory processing occurs in the
gnostic sets for each category, with some of the units in the set for oranges responding strongest. The most active unit in each set serves as its
output. Competitive normalization is used to adjust the activity of the gnostic sets, resulting in the output of the mango and apple sets being
suppressed. For olfactory processing, the gnostic sets would likely be located in piriform cortex [15]. Evidence acquired by the gnostic sets is then
accumulated across time, analogous to the processing in orbitofrontal cortex (OFC) [24]. Finally, the evidence from all categories is combined using a
linear classifier. Similar example systems can be constructed for other sensory modalities, which would employ different brain regions. Note that only
a single channel is depicted, but the experiments with visual data used three high-dimensional channels with differing chromatic and luminance
properties (see text for details).
doi:10.1371/journal.pone.0054088.g001
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the stimulus will suffice if the units in the competing gnostic sets

are less active.

Konorski did not specify that the gnostic units and sets should

process data spatially or temporally locally. For aural and olfactory

data, this approach is neurally reasonable due to the temporal

nature of the data. The relatively small size of IT receptive fields

(11 degrees) when objects in natural images are viewed [22]

suggests that spatially localized processing may underly object

processing in vision as well. In my implementation, the evidence

from gnostic sets is spatially or temporally accumulated after

competitive normalization of the gnostic sets, simulating one of the

roles of later processing in prefrontal brain regions [23,24].

All of the accumulated evidence from all channels and

categories projects to a layer of linear units, which make the final

categorization decision. An alternative winner-take-all classifica-

tion scheme was also explored in experiments. Specific details of

the implementation are given in the Materials and Methods

section.

Results

Statistical performance measures consistent with those used in

computer vision, machine olfaction, and machine audition were

used in my analysis. All of the data sets can be found online and

are available for research use.

Sound Classification
For sound recognition, I used cochleagram features [25], which

model the neural firing rate of the human inner ear’s basilar

membrane. These features were used to train a gnostic field for

musical artist classification using the Artist-20 data set [26], which

contains music from 20 contemporary artists (e.g., Aerosmith,

Queen, Green Day) with 6 albums each (1,413 tracks total). It has

six official training and test partitions, which each involve training

on five albums per artist and testing on the remaining album. On

Artist-20, gnostic fields exceeded the state-of-the-art method,

which generates compact signatures for each music track and

compares them using bipartite graph matching [27]. These results

are given in Fig. 2.

Odor Classification
To test the model’s performance on olfactory data, I used an e-

nose data set [28] consisting of over 100 odorants such as acetone,

cyclohexanol, and orange oil. I used the first 500 samples (10 s) of

odor exposure and restricted my experiment to substances with

five or more instances, leaving 108 categories. I conducted

classification experiments on this data set using 50 random splits,

with the number of training instances per category varied from 1

to 4 and the remaining data used for evaluation. Gnostic fields

performed well compared to one of the best approaches [29], as

shown in Fig. 3.

Object Recognition in Images
For image appearance features, I used dense CSIFT (Colored

Scale Invariant Feature Transform) features, which contain pooled

histograms of oriented edges from local regions of the image

extracted from a luminance channel and two opponent color

channels [30].

I evaluated the model’s image recognition abilities on the

Caltech-256 [31] and Caltech-UCSD Birds (CUB-200) [32] data

sets. For both data sets, the images are weakly labeled, i.e., not

segmented and the target object is in its natural background.

CUB-200 contains 200 bird species, primarily from North

America, and example images are shown in Fig. 4A. Caltech-

Figure 2. Sound classification results. Accuracy is reported using
the official standard for the Artist-20 music database [26], i.e., by
averaging results from the six official train/test folds. Guessing the most
common category would yield 6% accuracy. Gnostic fields surpass the
state-of-the-art model of Shirali-Shahreza et al. [27].
doi:10.1371/journal.pone.0054088.g002

Figure 3. Odor classification results. The plot shows the mean per-
category percent accuracy as a function of the number of training
instances per category. Chance is 0.93%. Because no classification
results exist for this dataset, I implemented the method proposed by
Trincavelli et al. [29], one of the best machine olfaction systems. Gnostic
fields performed well.
doi:10.1371/journal.pone.0054088.g003
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256 contains 256 general object categories, and the data set is

widely used in computer vision. Example Caltech-256 images are

shown in Fig. 4C. Results using gnostic fields compared to state-of-

the-art methods in computer vision [33–36] are given in Figs. 4B

and 4D. Almost all of the comparison approaches use many more

feature-types extracted at multiple scales [33,35,36], whereas only

a single feature type is used here. Despite this, gnostic fields

exceeded the state-of-the-art approaches.

The Role of Gnostic Set Competition
Prior to evidence pooling across time or space, gnostic sets

compete with each other, with weakly active sets being suppressed

by the activity of the most active set. I implemented this using a

kind of soft-competitive normalization. In contrast, a more

grandmother cell-like scheme would perform a kind of hard-

normalization, in which all sets are suppressed except for the most

active one. When this was done performance dropped by 4.96%

for CUB-200 and by 10.58+1.04% for Caltech-256 with 15

training instances per category. The change in accuracy was minor

for sounds and smells, with performance in both cases being no

more than 0.2% worse. This may be because the images contain

more noise due to their backgrounds, and grandmother cell coding

obliterates useful information from gnostic sets that are only

slightly less active than the winning category’s set.

The Role of Whitening
The original (pre-whitened) features could have dimensions that

have low variability, but are highly discriminative. This also means

that feature dimensions that are highly variable could dominate

decision making, even if they are not discriminative. Whitening

decorrelates the features and equalizes their variance [16], which

mitigates this problem.

I performed experiments to assess the impact of whitening, and

for all three modalities removing whitening impaired performance.

For images, performance was reduced on CUB-200 by 6.17%. An

even greater impairment was observed for sounds, with perfor-

mance dropping on Artist-20 by 15.26%. Olfactory performance

dropped by 3.25% when four training instances per category were

used.

Figure 4. Image classification results. (A) Two exemplar bird images from 3 of the 200 species in CUB-200 [32]. (B) Mean per-class accuracy on
CUB-200 when using the official train/test partition, which uses 15 training images per category. Chance is 0.5%. Error bars cannot be computed since
there is only a single train/test partition. Gnostic fields achieve high performance compared to state-of-the-art methods, which each combine
multiple types of color and grayscale features, including CSIFT. (C) Two exemplar objects images from 3 of the 256 Caltech-256 categories. Like CUB-
200, its categories exhibit a great range of intra-class shape and appearance variability. (D) Mean per-class accuracy on Caltech-256 [31] as a function
of training instances per category, averaged over 5 train/test folds. Chance is 0.39%. The standard errors for gnostic fields are less than one in all
cases. Griffin et al. [31] provide baseline results using grayscale SIFT and spatial pyramid matching. The current state-of-the-art model is Gehler and
Nowozin’s algorithm [33], which combines 39 kernels using 5 types of engineered gray and color image features. The model of Kanan and Cottrell
[34] is among the best methods using a single feature type. It used simulated eye movements and a model of early visual cortex.
doi:10.1371/journal.pone.0054088.g004
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Choice of Classifier
In the main results, I used the Balanced Winnow [37] algorithm

to learn the linear output classification weights, which are applied

to the normalized and pooled evidence that has been acquired

over time or space. However, any linear classification algorithm

could potentially be used, and the most popular approach in

machine learning is the Support Vector Machine (SVM). SVM’s

endeavor to maximize the margin between category decision

boundaries. Using a multi-category linear SVM algorithm [38] to

learn the linear classification weights produced similar results to

using Balanced Winnow. With the SVM approach, performance

was no more than 1.05% worse across modalities (0.55% for CUB-

200, 1.05% for odors, and 0.58% for Artist-20). While Balanced

Winnow achieved only slightly better performance, it also has the

advantages of using learning rules that are more biologically

plausible and being easier to implement (see Materials and

Methods).

Using a linear classifier allows information across categories and

channels to be combined, and helps defend against similar

categories being confused. To test this, I conducted experiments

using a single channel with a winner-take-all rule instead of using

the linear classification weights. For grayscale features, this

resulted in performance dropping on CUB-200 by 2.86%. For

sounds, performance was reduced by 6.87%. Finally, for odors

performance dropped 5.44% when four training instances were

used per category.

Comparison to HMAX
Some of the mechanisms employed here have been heavily

investigated in vision, most notably in the Hierarchical Max

(HMAX) framework [11,39], which provides a model for the

primate ventral ‘‘object recognition’’ stream. Like HMAX, gnostic

fields use a max-pooling operation; however, in HMAX this is

done over features with similar properties (e.g., the same

orientation), whereas for gnostic fields pooling is done over

features from the same category. Category-specific processing in

HMAX occurs primarily at the highest level. Gnostic sets do

category-specific processing in local regions of the visual field, with

evidence from across the visual field then combined.

I conducted an experiment to compare visual gnostic fields to

HMAX. For Caltech-101 [40], a data set that is similar to Caltech-

256 [31] but containing 101 categories, one of the best HMAX

implementations achieved 51% percent accuracy using 15 training

images per category with an SVM classifier [39]. Under the same

conditions, a gnostic field achieved 71.41+0.40% accuracy with

grayscale features and 75.93+0.44% accuracy with color features.

It is possible to use HMAX with a gnostic field, as discussed below.

Discussion

Konorski proposed a universal theory for recognition across

sensory modalities [2]. In this paper, I transformed his theory into

a computational model to explore its efficacy at recognizing

stimuli. The approach was compared against the best methods in

three distinct niches of machine perception, and it achieved state-

of-the-art performance. This required filling in the missing details

and making modeling decisions to instantiate a version of

Konorski’s theory. My results indicate that no single component

of the implemented framework is solely responsible for the

architecture’s effectiveness, since when each component is

removed performance was impaired in one or more modalities.

One of the appealing aspects of gnostic fields is that there are a

multitude of ways to improve and extend them. The easiest way to

increase accuracy would be to use additional feature types, which

could be incorporated as additional channels. For example, the S2

features produced by HMAX could be used with a visual gnostic

field. Several other avenues for improving performance are

discussed below.

Gnostic fields are complementary to recent developments in

self-taught (unsupervised) feature learning [41], in which unsu-

pervised learning algorithms are used to acquire features that are

good for recognition. This approach has been demonstrated to be

effective for both auditory and visual data. Self-taught learning

could be readily adapted to replace the features used as input to a

gnostic field. Deep belief networks [20], an approach closely

related to self-taught learning, have also demonstrated good

performance on stimuli from different modalities. A key difference

between the two approaches is that deep belief networks have a

fine tuning step in which all layers of the model are trained, and

this is not necessarily true of self-taught learning methods. This

allows the low-level features themselves to change with learning,

and it would be interesting to explore how this approach could be

used with a gnostic field in future work.

My implementation of gnostic fields requires labeled data, but

humans and animals are capable of discovering categories in an

unsupervised manner. It may be possible to enable unsupervised

discovery of gnostic sets by adapting elements of the model given

by Waydo and Koch [42]. They used HMAX image features as

input to an unsupervised neural network that employed sparse

coding principles to learn a representation in which few of the

output neurons were active. When they trained the network on a

small data set of faces for an identification task, the units learned

by the network were selective for particular individuals. They were

able to achieve high accuracy on the dataset when they used an

SVM-based classifier on the output of their neural network. The

max pooling mechanism could potentially be implemented by

generalizing their approach to incorporate an additional layer of

units.

Gnostic fields gain view robustness by pooling units tuned to

coarsely encoded templates learned from previous exposure to

individual views of objects. Some have argued that this scheme is

not computationally tractable or neurally plausible because an

exponential number of units would be needed for such a scheme to

be effective [21]. Gnostic fields serve as a counter example, since it

is not necessary to represent every possible view and in my

implementation. As a function of training data (experience), only a

sublinear (polylogarithmic) number of exemplars were learned for

each gnostic set (see Materials and Methods). Competitive

normalization allows this representation to be efficient, but more

work is needed to determine the best form this normalization

should take.

While soft-competitive normalization between gnostic sets was

vital to achieving high performance on images, it had little impact

on sounds and odors when hard competition was used instead.

Parameterizing the strength of the competition and making it

learnable or context dependent may improve performance across

modalities. A potential way to do this would be to fuse gnostic

fields with a variant of deep belief networks [20]. This could be

done by restricting connectivity in a deep belief network and

including competitive subnetworks for each category. This is

another approach that could potentially be extended to model

unsupervised or semi-superivsed self-organization of gnostic fields

from unlabeled stimuli.

Gnostic fields can be implemented with only a preliminary

background in machine learning, yielding good ‘‘off-the-shelf’’

performance, with no meta-parameters to adjust. If classification,

clustering, and feature extraction toolboxes are available then the

algorithm can be implemented in a few hours.

Recognizing Stimuli with Gnostic Fields
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Materials and Methods

Input and Whitening
A gnostic field’s multidimensional input is segregated into C

distinct channels. A stimulus from channel c consists of T vectors

of dc-dimensional information, fc,1, . . . ,fc,T . For visual informa-

tion this consists of composite features from spatial locations in the

visual field, for aural data it is distinctive frequency data acquired

within a temporal window, and for odors it is the response over

time of an array of e-nose sensors.

Using the training data from all categories, the mean mc is

computed and subtracted from the channel’s input. A whitening

matrix Wc is then learned from the channel’s training data using

principal component analysis whitening [16], i.e.,

Wc~ DczjIð Þ{
1
2ET

c , ð1Þ

where I is the identity matrix, Dc is the diagonal matrix of

eigenvalues, j is a regularization parameter (j~0:01 in experi-

ments), and the columns of the matrix Ec contain the eigenvectors.

All principal components are used. Subsequently, the input is

normalized to be spherical (unit length), i.e.,

f̂fc~
Wc fc{mcð Þ
Wc fc{mcð Þk k2

, ð2Þ

which enables measurements of similarity using dot products [43].

In the experiments that omitted whitening to assess its impact

on recognition performance, I set Wc~I.

Learning Gnostic Units
Gnostic units perform coarse template matching in localized

regions of space or time. The activity of a gnostic unit j from

channel c, responding to some stimulus from category k is given by

the dot product

a fc,tDc,k,jð Þ~vc,k,j
:̂ffc,t, ð3Þ

where f̂fc,t is an dc-dimensional vector of normalized features

encoding the current stimulus at temporal or spatial location t, and

vc,k,j is the neuron’s dc-dimensional weight vector. The output of

the gnostic set for category k and channel c is given by the unit

with the largest activity:

Q fc,tDc,kð Þ~ max
j

a fc,tDc,k,jð Þ: ð4Þ

Max pooling allows the gnostic set to respond strongly to any

stimuli that matches previously observed variants of the object

category [11].

The spherical k-means [44] unsupervised clustering algorithm is

used to learn the localized vc,k,j units for each of the K categories

and C channels. This is done by clustering the whitened training

features for each category and channel individually (spherical k-

means is run KC times). I initialized spherical k-means to a subset

of the training data using a variant of the k-means++ algorithm

[45]. Learning gnostic sets in this manner is similar to using

clustering to learn the units in a radial basis function neural

network [46]. The primary difference between the two approaches

is that the input to a gnostic set is spatially or temporally local and

the output of the gnostic sets is competitively normalized and then

pooled.

Konorski suggested that the number of gnostic units represent-

ing a category would depend on the complexity of the modality

(dimensionality) and the amount of experience with that category,

albeit with fewer units being recruited with increasing exposure

[2]. To implement this, the number of vc,k,j units learned for a

category k from channel c is given by

m k,cð Þ~min qlog
nk,c

2

� �2
ffiffiffiffiffi
dc

2

r
r,nk,c

 !
, ð5Þ

where nk,c is the total number of that category’s feature vectors

used for training and dc is their dimensionality. None of these

parameters are directly tunable, since they depend entirely on the

features. The function is polylogarithmic in the number of training

feature vectors. This means that with a moderate amount of

exposure to a category, m k,cð Þ will allocate a relatively small

number of units to the gnostic set compared to the number of

training observations. For example, the average number of

allocated nodes was 0.06% of the total number of training feature

vectors for Artist-20 and 2.76% for Caltech-256 with 50 training

images per category. However, if very few training observations

are available, e.g., one per category, then the number of units

allocated will be similar to the number of training instances.

Competitive Normalization
If multiple gnostic sets are sensitive to the same stimulus, then

inhibitive competition suppresses the responses of the least active

sets [2]. To implement this for the K gnostic sets in channel c, all

units have their activity attenuated using

g fc,tDc,kð Þ~tQ fc,tDc,kð Þ{hc,tsz, ð6Þ

with the threshold hc,t being equal to the population mean, i.e.,

hc,t~
1

K

X
k’

Q fc,tDc,k’ð Þ, and t.sz denoting half-wave rectifica-

tion [47], i.e., setting the negative values to zero. The non-zero

responses are normalized using

b fc,tDc,kð Þ~nc,tg fc,tDc,kð Þ, ð7Þ

with

nc,t~

P
k’ g fc,tDc,k’ð Þ

K{1z
P

k’ g fc,tDc,k’ð Þ2
� �3=2

, ð8Þ

performing a form of divisive normalization that also alters the

activity of the gnostic sets according to the population’s variability.

This is because as the number of categories K increases, K{1

approaches zero, which gives

lim
K??

nc,t~
1

lc,trc,t

, ð9Þ

where lc,t~
P

k’ g fc,tDc,k’ð Þ2
� �1=2

is a divisive normalization term

and

rc,t~

P
k’ g fc,tDc,k’ð Þ2P
k’ g fc,tDc,k’ð Þ ð10Þ
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is the contraharmonic mean. The contraharmonic mean is equal

to the sum of the arithmetic mean and the Fano factor, the

variance divided by the mean, which is a common measure of

neural variability. The inverse of the Fano factor is related to the

signal-to-noise ratio and thus reweights activity to inhibit the

effects of noisier signals.

Evidence Accumulation and Classification
For each channel, categorical evidence is accumulated, either

spatially across the visual field or over time for aural and olfactory

stimuli, by summing over and normalizing the activity of the local

population representing each class

y fc,1, . . . ,fc,T Dc,kð Þ~ 1

zc

XT

t~1

b fc,tDc,kð Þ, ð11Þ

where zc~maxk

PT
t~1 b fc,tDc,kð Þ, which normalizes activity by

the most active category. Note that for some linear classifiers an

alternative normalization scheme for y fc,1, . . . ,fc,T Dc,kð Þ may be

advantageous, such as subtracting the mean and dividing by the

Euclidean norm.

A linear multi-category classifier decodes the activity of these

pooling units. This allows less discriminative channels to be down

weighted and it helps the model cope with confused categories.

The model’s predicted category is given by

~kk~ argmax
k

wk
:Y, ð12Þ

where wk is the weight vector for category k and Y is the response

from the y pooling units across all categories and channels

combined into a single vector.

In the main results, the wk vectors were learned using the

Balanced Winnow algorithm [37]. Unlike the Perceptron

algorithm, which uses an additive update rule, Winnow instead

uses multiplicative updates. Dendritic spines of pyramidal neurons

undergo multiplicative changes in size, which suggests that

multiplicative learning rules may underlie neuronal learning and

memory [48]. To use Balanced Winnow with multiple categories,

the linear machine approach was adopted during training, i.e., as

each training instance was observed, the weight vector from the

correct category was strengthened and the weight vector

corresponding to the incorrect category that responded the most

was weakened. Balanced Winnow maintains populations of

excitatory and inhibitory weights and uses multiplicative updates;

however, it is possible to combine these weights into a single

representation using the hyperbolic sine (sinh) function (see [37]

for details). This also results in the learning rules becoming

additive in the transformed space. Using the re-expressed version,

the learning rules can be extended to the multi-category setting as

follows.

For a training instance Yt from category yt, the response of the

unit for category k is given by

ak,t~wk
:Yt, ð13Þ

where wk/2 sinh zkð Þ with sinh applied to all elements of the

vector zk. For the correct category yt, the zk weights are

strengthened using

zyt/zytz log
1

g

� �
Yt, ð14Þ

and the weights for the most active incorrect category are

weakened by

zbt/zbt{ log
1

g

� �
Yt, ð15Þ

where

bt~ argmax
k’=yt

ak’,t: ð16Þ

The weight vectors for all other categories are left unaltered. The

learning rate g was set to 0.8, and the classifier was trained until

the weight vectors converged. Since online learning was unnec-

essary for this work, a batch version of the algorithm was used in

practice.

Experiments were also performed using an SVM to learn the wk

weight vectors. These experiments used the multi-category linear

support vector machine (SVM) algorithm of Crammer and Singer

[38] from the LIBLINEAR toolbox [49] to learn the linear

classification weights, with the cost parameter set low (to 0.0001)

since the normalization procedure makes the training vectors very

separable.

In the experiments that omitted using the linear classification

weights, the decision rule for a single channel was instead given by

~kk~ argmax
k

y f1, . . . ,fT Dkð Þ: ð17Þ

Sound Recognition Details
Sounds were recognized using cochleagram features [25], which

model basilar membrane neurons. Standard settings were used

with Ma’s implementation [50] to convert sounds into 48-

dimensional vectors containing a sound’s constituent frequencies

between 50 Hz and 16 kHz, comparable to human hearing. This

signal was logarithmically compressed. The interval between

successive frames was 10 ms, with a temporal integration time of

8 ms. These settings produce 100 48-dimensional cochleagram

features per second.

Odor Recognition Details
Odor recognition performance was assessed using the largest

publicly available e-nose database, which is available in the

supplementary materials of [28]. The MOSES II e-nose used to

create the data set produces a 16-dimensional time varying signal

that I normalized to unit length. Each odor was sampled at 50 Hz,

and 2{7 recordings of each odor are available.

Because no classification results exist for it, I implemented the

method of Trincavelli et al. [29]. They transform the T e-nose

features from a stimulus into a single vector, which is used with a

radial basis function SVM classifier. SVM parameters are tuned

using five-fold cross-validation with the training instances per

category varied from two to four (cross-validation needs two or

more training instances per category).

Image Recognition Details
Each input image is resized to make its smallest dimension 128

pixels, with the other dimension chosen to preserve the image’s

aspect ratio. Gamma correction was left intact (see [51] for a

discussion of the impact of gamma correction when using SIFT

descriptors). Dense CSIFT was configured to use 11|11 spatial
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bins with a step size (i.e., stride) of 5 pixels, and the dense CSIFT

implementation in the VLFeat toolbox was used [52]. While these

settings do make the spatial extent of the input relatively small, this

is somewhat analogous to the size of receptive fields in IT, which

have been shown to be only about 11 degrees of visual angle on

average when natural scenes are viewed [22].

Under these settings, about 500–700 high dimensional feature

vectors at different locations in the visual field are produced for

each of the three image channels, at a single scale. Computing

them requires 60 ms (20 ms per channel) on an Intel Core i7-

980X in MATLAB R2012a. Only a single scale was used in

experiments, but additional scales could be incorporated as extra

channels.

Topological information was incorporated into the image

features. Let xt,ytð Þ be the location of the t’th feature vector,

with these coordinates being normalized by the image size to be

between 21 and 1. This was used to construct the location

information vector ‘c,t~ xt,yt,x
2
t ,y2

t ,1
� �T

, which was normalized

to unit length and appended to the t’th feature vector.

Each CUB-200 category has 20–39 images, and the official

evaluation set uses 15 training images per category. Images were

cropped in the standard manner using the bounding box

annotations (see [36]).

For Caltech-256, the model’s performance was evaluated using

randomly generated train/test partitions, with the number of test

images per category fixed at 25 and the number of training images

per category varied, mirroring the setup of others [33]. Five

partitions were used for each number of training instances, with

the mean-per-class accuracy of each partition being reported in

Fig. 4D (the standard approach). The same setup was used in the

experiments with Caltech-101.
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