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Abstract

Since Yarbus’s seminal work in 1965, vision scientists have argued
that people’s eye movement patterns differ depending upon their
task. This suggests that we may be able to infer a person’s task (or
mental state) from their eye movements alone. Recently, this was
attempted by Greene et al. [2012] in a Yarbus-like replication study;
however, they were unable to successfully predict the task given to
their observer. We reanalyze their data, and show that by using
more powerful algorithms it is possible to predict the observer’s
task. We also used our algorithms to infer the image being viewed
by an observer and their identity. More generally, we show how off-
the-shelf algorithms from machine learning can be used to make
inferences from an observer’s eye movements, using an approach
we call Multi-Fixation Pattern Analysis (MFPA).
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1 Introduction

Yarbus [1967] showed that an observers task can drastically alter
their scan path (eye movement trajectory) when viewing a scene.
While recording his subject’s eye movements, Yarbus showed the
subject a scene and gave various instructions, such as “estimate
the material circumstances of the family in the picture” and “give
the ages of the people in the picture.” His subjects scan paths re-
vealed considerable qualitative differences across the tasks. Future
researchers confirmed Yarbus’s general result in a variety of eye
tracking experiments [Ballard et al. 1995; Castelhano et al. 2009;
DeAngelus and Pelz 2009; Hagemann et al. 2010; Hayhoe et al.
2003; Kaakinen and Hyona 2010; Land et al. 1999; Tatler et al.
2011]. Since an observer’s task influences their scan paths, it may
be possible to infer from an observer’s scan path what that observer
is attempting to accomplish. We refer to algorithms that attempt to
make inferences from eye tracking data as Multi-Fixation Pattern
Analysis (MFPA).

In a study similar to Yarbus’s [1967], Greene et al. [2012] attempted
to use MFPA to infer their subject’s tasks. In their experiment, the
subjects’ eye movements were recorded while photographs were
shown to them. The subjects were asked to perform one of the
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Figure 1: MFPA algorithms take a scan path’s time-series features
as input and use them to make inferences about a person solely
from their eye movements. In this paper we infer the tasks given to
subjects, the identities of the subjects, and the images viewed by the
subjects.

following four tasks: (1) determine the decade in which the pic-
ture was taken, (2) memorize the picture, (3) determine the wealth
of the people in the picture, or (4) determine how well the people
in the picture know each other. Using both the visual and motor
eye movement summary statistics from each trial as input, Greene
et al’s algorithm did not exceed chance at inferring the task given
to their subjects. They concluded that “static scan paths alone do
not appear to be adequate to infer complex mental states of an ob-
server.” We believe this conclusion deserves further scrutiny for
two reasons.

The first reason is that Greene et al. were able to train their al-
gorithm to successfully infer subject identity. Since this was pos-
sible, it suggests that subjects may have very individualized scan
path patterns. For task-prediction, this means that it may be wise
to train a task-prediction classifier for each subject individually us-
ing a within-subjects analysis. This was not explored in their study,
and they trained their task-prediction classifier using data from all
subjects. The second reason is that their approach turns each trial’s
time-series features into a single vector by calculating the trial’s
summary statistics, e.g., the number of fixations in the trial and the
amount of dwell time on faces in the trial. This approach discards a
large amount of data within each trial, including where the subject
looked and the sequential pattern of eye movements that they made.
Using a more sophisticated technique that preserves this informa-
tion needs to be explored.

In this paper, we reanalyze Greene et al.’s data and conclusions.
We found that their data does contain sufficient information to infer
the tasks given to their subjects. To do this, we used two different
MFPA algorithms. The first algorithm uses only summary statis-
tics features to represent each trial, while the second algorithm can
preserve time-series information within a trial. Further, we conduct
a within-subjects analysis and show that this allows us to infer a
subject’s task using very little data.



Figure 2: Four example images used in Greene et al.’s study.

2 MFPA Algorithms

We compare two algorithms for MFPA. The first is similar to
Greene et al.’s method in computing summary statistics; however,
unlike Greene et al., we do not include any features that refer to the
image - only the fixation locations over time. Summary statistics
integrate over time, removing temporal information. The second
algorithm makes explicit use of the temporal dynamics of the eye
position recordings.

2.1 Summary Statistics Algorithm

The main difficulty in constructing a classifier for eye tracking
data is that a variable number of fixations occur within a trial.
This means that using an off-the-shelf classification algorithm re-
quires turning this time-series data into a single vector. Greene et
al. [2012] do this by generating a single vector of summary statis-
tics per trial. We used a similar approach. For each trial’s summary
statistics features, we used 2-dimensional features consisting of the
mean fixation duration and the number of fixations. Both of these
motor features were used by Greene et al., but they also used mean
saccade amplitude and three visual features: the amount of dwell
time on faces, bodies, and objects. We normalized (z-scored) the
training and testing data by subtracting the mean of the training
data from the training and testing features and then dividing by the
training standard deviation. Subsequently, a radial-basis function
support vector machine (SVM) was used to classify these features.
To train the classifier, we used the C-SVC algorithm from the LIB-
SVM toolbox [Chang and Lin 2011]. Four-fold cross-validation
using the training data was used to tune the SVM cost parameter
and the width of the radial-basis functions. Both were chosen from
2−8, 2−7, . . . 28.

2.2 Fisher Kernel Learning Algorithm

Using summary statistics is one way to transform each trial’s
variable-length time-series features into a single vector, but it dis-
cards a great deal of information. Each trial’s features are com-
prised of a variable number of 3-dimensional feature vectors (one
vector per fixation), which contain the fixation’s Cartesian screen
coordinates and the duration of the fixation. Unlike using sum-
mary statistics, Fisher kernels are a way to preserve the temporal
information within the time-series, while still condensing it into a
single vector that can be used with a standard classifier [Jaakkola
and Haussler 1998]. This is done by internally training a generative
model, usually a hidden Markov model with Gaussian emissions,
which can internally represent the temporal patterns. The param-
eters of the HMM, which include transition probabilities between
hidden states and the probability of observing particular fixations
given the internal state, will then reflect the sequential informa-

tion in the data. The idea of a Fisher kernel is to compute how a
new sequence of data would change the parameters of the model
if the model were trained on them - that is, the parameter gradi-
ents of the generative model when given a novel time-series as in-
put. This gradient is a fixed-length vector. Two time-series from
the same category will likely change the model in the same way;
the Fisher kernel computes a kind of inner product between them.
However, Fisher kernel representations do not necessarily ensure
that similar category data will lead to similar parameter changes,
as it does not use the categories to compute the features. Fisher
Kernel Learning (FKL) is an approach to rectify this limitation by
using each time-seriess labels to improve the learned representa-
tion by explicitly attempting to keep the gradients within a category
close together [van der Maaten 2011]. See van der Maaten [2011]
for more details regarding Fisher kernel features and FKL.

We used FKL to turn each trial’s time-series data into a single vec-
tor. To do this, we used van der Maaten’s [2011] MATLAB soft-
ware (available on his website), which uses a hidden Markov model
with Gaussian emissions as the underlying generative model. We
set the number of hidden states to 10, except for one of our within-
subjects experiments where we set the number of hidden states to
5 instead. The number of hidden states alters the length of the
FKL feature vectors, e.g., using 10 hidden states produces 140-
dimensional vectors. Before training FKL, we normalized the 3-
dimensional testing and training time-series features by subtracting
the mean of the training features and then dividing by the training
standard deviation across all trials.

Whitened principal component analysis (PCA) was used to re-
duce the dimensionality of the FKL features. Each trial’s FKL
features were classified using a radial-basis function SVM. Us-
ing the training data, the SVM cost parameter, the width of
the radial-basis functions, and the number of principal compo-
nents were tuned using 4-fold cross validation. The cost pa-
rameter and radial-basis function width were both chosen from
2−8, 2−7, . . . 28. The number of principal components was cho-
sen from1, 5, 10, 20, 30, . . . , D, whereD is the dimensionality of
the FKL features.

3 Results

3.1 Dataset

In their study, Greene et al. [2012] gathered eye movement data
in three different experiments. We analyzed the data from their
Experiment 31. In this experiment, 20 grayscale photographs from
Time Life magazine were shown to 16 subjects for 60 seconds each.
Four of these images are shown in Figure 2. Each subject viewed

1The data from experiments 1 and 2 was not made available to us.



Figure 3: Mean accuracy and 95% confidence intervals for each
of the four tasks in the first within-subjects evaluation protocol. See
Section 3.1. for more information about the tasks.

the images in the same order. The experiment was divided into
four blocks of five images each, with a Latin square design used
to assign the block order to the participants. In the four blocks
participants were either told to (1) memorize the picture [Memory],
(2) determine the decade in which the picture was taken [Decade],
(3) determine how well the people in the picture know each other
[People], or (4) determine the wealth of the people in the picture
[Wealth].

3.2 Task Prediction using Greene et al.’s Protocol

In each of Greene et al.’s [2012] cross-validation trials, they trained
their classifiers using data from all participants and then tested on
a single hold-out trial, so classifiers were trained and evaluated 320
times. In their experiment, prediction of task was at chance (25.9%
correct, 95% CI = 21–31%,p = 0.70; chance = 25%).

In our experiment, the summary statistics algorithm did not signifi-
cantly differ from chance (26.3% correct, 95% CI = 21.4–31.1%,p
= 0.61), which is consistent with Greene et al.’s result; however, the
FKL algorithm did perform above chance (33.1% correct, 95% CI
= 27.9–38.3%). This suggests that using summary statistics alone
discards a great deal of discriminative data for predicting an ob-
server’s task, which is preserved using FKL.

3.3 Within-Subject Task Prediction

In each of Greene et al.’s [2012] cross-validation trials, they trained
their classifiers using data from all participants and then tested on
a single hold-out trial. In this experiment, we explored training
and evaluating classifiers using data from each subject individually.
Because there are only 20 trials per subject, with 5 trials per task,
we did this using two different evaluation protocols to cope with
the small sample size. The small sample size is particularly prob-
lematic for FKL, because it has many more parameters than the
summary statistics algorithm.

In the first, we used leave-one-out cross-validation using only the
data from each participant individually, i.e., we trained each clas-
sifier using 19 trials, then tested on the one hold-out trial, and re-
peated this procedure 20 times per subject. Using an unbalanced
number of training examples per class with a very small training
set can impair predictive accuracy. To cope with this, for both al-
gorithms we set the SVM cost parameter to be variable per class,
with it being multiplied bywk =

(
nk

(∑
k′ n−1

k′

))−1
, wherenk is

the number of training instances for categoryk. Note that this was
only done in this experiment. Using this approach, both algorithms

Figure 4: Mean accuracy and 95% confidence intervals for each
of the four tasks in the second within-subjects evaluation protocol.
These results used 125 times more data than the first within-subjects
protocol, which produced tighter confidence intervals. See Section
3.1. for more information about the tasks.

achieved above chance accuracy, with the summary statistics algo-
rithm achieving 38.8% correct (95% CI = 33.4–44.1%; chance =
25%) and the FKL algorithm achieving 52.9% accuracy (95% CI =
46.4–57.4%). We show the performance per task in Figure 3.

In the second protocol, for each subject we train each classifier us-
ing 4 trials per category (16 trials total), and then test on the re-
maining 4 trials (1 per category). This was done for all 625 possi-
ble combinations of train and test data for each of the 16 subjects.
Because FKL is relatively slow, for this experiment we used five
hidden states instead of ten. Again, both algorithms achieved above
chance accuracy, with the summary statistics algorithm achieving
37.9% accuracy (95% CI = 37.4–38.3%; chance = 25%) and the
FKL algorithm achieving 36.8% accuracy (95% CI = 36.4–37.3%).
The accuracy per task is shown in Figure 4. FKL does not perform
as well as in the first within-subjects protocol. One potential rea-
son why is that it is trained using five states instead of ten. When
we use only 5 states in the first protocol, FKL’s accuracy was re-
duced to 34.1% (95% CI = 28.8–39.3%). Other potential reasons
why there may be a difference in performance between the two pro-
tocols are that (1) FKL is trained with slightly less data, so it may
be over-fitting to a greater degree; and (2) adjusting the cost param-
eter in the first protocol may have inadvertently biased the model’s
predictions toward the correct answer.

3.4 Participant Identity Prediction

We also trained our algorithms to predict subject identity, using
the same leave-one-out cross-validation protocol used by Greene
et al. [2012], as described in Section 3.2. They achieved 42.8%
correct (95% CI = 37 – 48%; chance = 6.3%), using a combination
of motor and visual features. Using only motor features, the sum-
mary statistics algorithm achieved 31.3% accuracy (95% CI = 26.1–
36.4%) and the FKL algorithm achieved 52.5% accuracy (95% CI
= 47.0–58.0%). The likely reason why their summary statistics fea-
tures outperformed ours is that they incorporated visual features.
This suggests that if visual features were incorporated into the time-
series data input into FKL, then its performance would markedly
improve at identity prediction.

3.5 Image Prediction

Greene et al. [2012] also used their algorithm to predict which im-
age was being viewed by a subject, using the same evaluation pro-
cedure as described in Section 3.2. They achieved 54.4% correct



(95% CI = 48–60%; chance = 5%). We used an evaluation proce-
dure identical to theirs. Our summary statistics algorithm did not
perform significantly better than chance (4.1% correct, 95% CI =
2.2–6.0%). In additional to the summary statistics features we used,
Greene et al. also used visual features (the amount of dwell time on
faces, bodies, and objects). Our results suggest that these visual
features were key to predicting which image was being viewed in
their study. However, the FKL algorithm did perform significantly
above chance (41.6% correct, 95% CI = 36.1–47.0%), indicating
that by incorporating information from the sequence of eye move-
ments it is still possible to perform the inference, albeit with less
accuracy compared to incorporating visual information as well.

3.6 Discussion & Future Work

We showed that there is sufficient information in Greene et
al.’s [2012] data to infer the task given to their subjects using only
motor information, i.e., fixation duration and the Cartesian loca-
tions of the fixations. While we confirmed their result that using
summary statistics is not sufficient to infer the the subject’s task
when trained on data from all subjects, we found that we could
make this inference using FKL. Moreover, we found that using a
within-subjects analysis would allow us to infer the task given to the
subject using either algorithm. Because our within-subjects analy-
sis used very little training data but nevertheless achieved above-
chance accuracy, this result suggests that individuals have distinct
eye movement patterns when performing the same task, and thus
one person’s eye movement strategy may not generalize to other
people.

While our algorithms were able to infer the observer’s task, this is
somewhat surprising because the subjects were not experts at any
of the tasks given by Greene et al. [2012], e.g., prior to the exper-
iment most of them probably lacked experience with judging the
decade of a photo. We would expect that using tasks that people are
experts at, such as recognizing facial expressions, would elicit scan
paths with more stereotyped patterns per task. This would likely
improve classification accuracy significantly. Using faces as stim-
uli also may be algorithmically beneficial for FKL. FKL does not
compensate for stimuli in which discriminative information could
appear in random positions (although it did work well in our experi-
ments). Its performance would likely be improved if discriminative
information only appeared in particular locations, which would be
the case with aligned frontal face images. We are currently explor-
ing this in a subsequent study.

The two feature construction algorithms we used turn a time-series
into a single vector, which was then used as input to a separate
classifier. Instead of this two-step process, an alternative would be
to train a single model that can draw inferences from time-series
directly, such as a Hidden-State Conditional Random Field [Truyen
et al. 2008]. Using a single model could lead to improvements in
predictive accuracy.

Our algorithms are general in design, and have many potential ap-
plications. One promising area of study is the identification of neu-
rophysiological diseases. Tseng et al. [2012] pioneered this ap-
proach, showing that their algorithm could discern whether their
subjects had Attention Deficit Hyperactivity Disorder, Parkinson’s
Disease, Fetal Alcohol Syndrome, or were disease free by combin-
ing visual saliency and eye movement data. Our results suggest
that using motor activity alone may be sufficient to make these in-
ferences. Further development of MFPA techniques could yield a
diagnostic clinical tool that is both low-cost and high throughput.
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