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Abstract

Classification of images in many category datasets has
rapidly improved in recent years. However, systems that
perform well on particular datasets typically have one or
more limitations such as a failure to generalize across vi-
sual tasks (e.g., requiring a face detector or extensive re-
tuning of parameters), insufficient translation invariance,
inability to cope with partial views and occlusion, or sig-
nificant performance degradation as the number of classes
is increased.

Here we attempt to overcome these challenges using a
model that combines sequential visual attention using fixa-
tions with sparse coding. The model’s biologically-inspired
filters are acquired using unsupervised learning applied to
natural image patches. Using only a single feature type,
our approach achieves 78.5% accuracy on Caltech-101 and
75.2% on the 102 Flowers dataset when trained on 30 in-
stances per class and it achieves 92.7% accuracy on the
AR Face database with 1 training instance per person.
The same features and parameters are used across these
datasets to illustrate its robust performance.

1. Introduction

Bestowing an artificial vision system with a fraction of
the abilities we primates enjoy has been the goal of many
computational vision researchers. While steady progress
has been made toward this objective, the gap between the
capabilities of the primate visual system and state-of-the-art
object recognition systems remains vast. Humans are capa-
ble of accurately recognizing thousands of object categories
and the primate visual system copes very well with transla-
tion, scale, and rotation variance [31]. This has motivated
many vision researchers to study human vision in order to
extract operating principles that may improve object recog-
nition techniques [31, 24, 28, 29].

Aspects of these biologically inspired approaches, per-
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Figure 1. Two images and their corresponding bottom-up saliency
maps, which indicate interesting features in an image. Values with
high salience are red and low are blue. Saliency maps can be used
in object recognition by using them as interest point operators.

haps inadvertently, have been incorporated into state-of-the-
art methods in object recognition. For example, the compu-
tation of SIFT descriptors [21] begins by using difference of
Gaussian (DOG) filters at multiple scales, which is similar
to the sort of computation done in the vertebrate retina [10].
Another example is spatial pooling of features or “boxcar
filtering” [17, 31, 28, 29, 38], a computation performed by
many neurons such as complex cells in primary visual cor-
tex (V1) [31]. Sparse coding algorithms were pioneered in
the computational neuroscience community with Indepen-
dent Component Analysis (ICA) [4, 36] and efficient coding
models [7], but it has recently been adopted by the computer
vision community [33, 38, 30].

However, one aspect of primate vision that has been



mostly ignored by computer vision researchers is visual at-
tention [13]. Because we cannot process an entire visual
scene at once, we sequentially look at, or fixate, salient lo-
cations of an object or in a scene. The fixated region is
analyzed and then attention is redirected to other salient re-
gions using saccades, ballistic eye movements that are an
overt manifestation of attention. We actively move our eyes
to direct our highest resolution of visual processing towards
interesting things over 170,000 times per day or about 3 sac-
cades per second [32]. Saliency maps are a successful and
biologically plausible technique for modeling visual atten-
tion (see figure 1).

In this paper we propose an approach based upon two
facets of the visual system: sparse visual features that cap-
ture the statistical regularities in natural scenes and sequen-
tial fixation-based visual attention. Our method is empiri-
cally validated using large object, face, and flower datasets.

2. Background
2.1. Using Natural Image Statistics

Computer vision has traditionally used features that
have been hand-designed, such as Haar wavelets, DOG fil-
ters [21, 39], Gabor filters [28, 29, 1], histogram of ori-
ented gradient (HOG) descriptors [25], SIFT descriptors
[21, 38, 17, 27], and many others. An alternative is to use
Self-taught learning [30]: unsupervised learning applied
to unlabeled natural images to learn basis vectors/filters that
are good for representing natural images. The training data
is generally distinct from the datasets the system will be
evaluated on. Self-taught learning works well because it
represents natural scenes efficiently, while not overfitting to
a particular dataset. The space of possible images is incred-
ibly large. However, natural scenes make up a relatively
small portion of this space, so an efficient system should
use the statistics of natural scenes to its advantage [7]. In
object recognition research self-taught learning algorithms
typically do this by employing sparse coding [30, 33].

A sparse code is one in which only a small fraction of
the units (binary values, neurons, etc.) are active at any
particular time on average [7]. This is in contrast to a lo-
cal code in which only a single unit is activated to indicate
presence or absence or a dense code that represents a signal
by having many highly active units. Sparse codes forge a
compromise between these two approaches that has yielded
many useful algorithms. When sparse coding is applied to
natural images, localized, oriented, and bandpass filters are
typically learned (see figure 4). These properties are shared
by neurons in V1, which exhibit very sparse activity [7].

2.2. Visual Attention

A saliency map is a topologically organized map that in-
dicates interesting regions in an image based on the spatial

organization of the features and an agent’s current goal [13].
These maps can be entirely stimulus driven, or bottom-up, if
the model lacks a specific goal. An example is provided in
figure 1. There are numerous areas of the primate brain that
contain putative saliency maps such as the frontal eye fields,
superior colliculus, and lateral intraparietal sulcus [9].

There are many computational models designed to pro-
duce saliency maps. Typically these algorithms produce
maps that assign high saliency to regions with rare features
or features that differ from their surroundings. What consti-
tutes “rare” varies across the models. One way to represent
rare features is to determine how frequently they occur. By
fitting a distribution P (F'), where F' represents image fea-
tures, rare features can be immediately found by computing
P (F)~" for an image. Some of the best models for predict-
ing human eye movements while viewing natural scenes use
this approach [39, 3].

2.3. Sequential Object Recognition

While many algorithms for saliency maps have been
used to predict the location of human eye movements, lit-
tle work has been done on how they can be used to recog-
nize individual objects. There are a few notable exceptions
[1, 23, 27, 15] and these approaches have several similar-
ities. All of them begin by extracting features across the
image along with a saliency map to determine regions of in-
terest. The saliency map may be based on the features used
for classification or it may be created using other features.
A small window representing a fixation is extracted from
the features at the location picked from the saliency map.
The extracted fixation is then classified and subsequent fix-
ations are then made according to the saliency map. The
mechanisms used to combine information across fixations
vary across the models.

Besides sharing similar frameworks, these approaches
also have implementation similarities. Most of them em-
ploy a nonparametric classifier of individual fixations such
as k-nearest neighbors or kernel density estimation. The
notable exception being Morioka [23] who used a type of
discriminative Markov model to represent sequences of fix-
ations with varying length. The types of features they em-
ploy vary, ranging from SIFT and luminance [27], Gabor
filters [1], a Canny edge detector with a steerable-pyramid
[15], and a Harris corner detector [23]. None of these
approaches have been evaluated with modern large object
datasets such as Caltech-101 [6]. NIMBLE [1], Palletta
et al. [27], and Morioka [23] were evaluated using object
datasets with static backgrounds containing multiple views
of the same object, instead of trying to learn object cate-
gories. NIM [15] was evaluated using the AR face dataset
(see section 4.2).

Here, we adopt the NIMBLE framework [1], while re-
placing most of its implementation details, such as its fea-



Preprocessed ICA Features Compute Saliency Update Posterior: | Decision
—_— —_— _—
Image Map Using SUN P(C=k|g.,85,--,8,)

Y

- ?

ICA Activation
i —_—
Function

g
Get Fixation g, ] —_— [

Compute:
P(g. | C=k)

Figure 2. A high-level overview of the model during classification. See text for details.

tures and saliency map model, with an approach based on
natural image statistics. Our system is evaluated using dif-
ficult object, face, and flower datasets.

3. Framework & Implementation

We first provide a high level description of our model,
with the implementation details given in the remainder of
this section. To classify an image our approach begins
by pre-processing it using mechanisms similar to those in
the primate retina to help cope with luminance variation.
Sparse ICA features are then extracted from the image.
These features are used to compute a saliency map, which
is treated as a probability distribution, and locations are ran-
domly sampled from the map. Fixations are extracted from
the feature maps at the sampled location, followed by prob-
abilistic classification and the acquisition of additional fixa-
tions. A flow chart describing this process is given in figure
2.

3.1. Image Preprocessing

Images are first pre-processed to ensure that they are a
standard size. This is done by resizing each image such
that its smallest dimension is 128 with the other dimension
resized accordingly to maintain its aspect ratio. Grayscale
images are converted to color. Images are then converted
from the default standard RGB (sRGB) color space to LMS
color space, which is designed to be similar to the responses
of the long-, medium-, and short-wavelength human cones
[5]. The minimum value in the LMS image is then sub-
tracted from it, followed by dividing by its maximum value.

There is strong biological evidence that luminance adap-
tation begins in the photoreceptors. They modulate their
response to cope with the enormous luminance variance en-
countered in the natural environment. The logarithm and
functions with similar shapes have been used by many com-
putational neuroscientists studying sparse coding as a sim-
ple model of the cone’s response to light [7, 4] and they pro-
vide a good fit to data from cone photoreceptors. Frequently
the use of the logarithm is followed by contrast stretching
(or normalization) to ensure the values are between 0 and
1. To model this we apply the following function to the

Figure 3. Before (top row) and after (bottom row) pre-processing
images, with three exhibiting altered luminance. The cone nonlin-
earity helps cope with changes in lighting by preserving important
differences while weakening superficial ones.

image’s pixels
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where € > 0 is a suitably small value (we use ¢ = (0.05) and
Thinear (2) € [0, 1] is a pixel of the image in LMS color space
at location z. Note that rponiinear (2) € [0,1] as well. See
figure 3 for an example of the effects these pre-processing
steps have on an image.

3.2. Feature Learning

We learn features by applying ICA to image patches
from a dataset of unlabeled color natural images. When
ICA is used in this way it produces a set of sparse filters
with luminance and chromatic properties similar to simple
cells in primate visual cortex [37, 4], with the majority of
them responding to luminance, similar to the primate mag-
nocellular pathway, and two smaller populations responding
to blue/yellow and red/green, similar to the primate konio-
cellular and parvocellular pathways [19].

To learn ICA filters, we preprocess 584 images from the
McGill color image dataset [26]. From each image, 100
b x b x 3 patches are extracted from random locations. The
channel mean (L, M, and S) computed across images is sub-
tracted from each patch. Each patch is then treated as a
3b2 dimensional vector. After all patches have been ex-
tracted, principal component analysis (PCA) is applied to
the patch collection to reduce the dimensionality. We dis-
card the first principal component, which has a very large
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Figure 4. The learned ICA filters that are applied to images in our
approach. When ICA is applied to color image patches it produces
a set of features with luminance and chromatic properties similar
to that of V1 neurons [37, 4], with the majority of them respond-
ing to luminance and two smaller populations responding to yel-
low/blue and red/green. The same color-opponent organization is
found in the Catarrhine primate visual system (i.e., magnocellular,
koniocellular, and parvocellular channels).

eigenvalue corresponding to changes in brightness across
patches. To limit the number of features learned, we re-
tain d of the remaining principal components, where d is
chosen by optimizing performance on an external dataset
(see section 3.6). After PCA, we apply Efficient FastICA
[14] to the patches. This produces a linear transformation
representing image patches as their statistically independent
components: Gabor-like edges and bars. The learned filters
are shown in figure 4.

ICA features are extracted from an m X n X 3 image
by filtering it with each of the d ICA filters. The image is
padded to ensure the filtered output is the same size as the
image. This produces an m x n X d filter response stack,
corresponding to a high-dimensional sparse representation
of the image.

3.3. Extracting Feature & Saliency Maps

We use the Saliency Using Natural statistics (SUN)
model to compute bottom-up saliency maps. SUN defines
bottom up saliency as P (F) ™' [39], where F indicates
the ICA features. Since the components of F' have been
made largely statistically independent by ICA, SUN mod-
els P (F) as the product of unidimensional distributions:
P(F=f) =[], P(f;), where f; is the i’th element in
vector f. The generalized Gaussian distribution (GGD) is

used to model each of these unidimensional distributions.
The GGD is a flexible distribution which has many com-
mon distributions as special cases, such as the Laplace and
Gaussian distributions, making it a good choice to model
sparse visual features. The GGD is defined as

0; b:
P (f;) = W exp <— ) ) 2

where 6; > 0 is the shape parameter, o; > 0 is the scale
parameter, and I" is the gamma function. For each of the d
ICA filters, one unidimensional GGD is fit using the patches
from section 3.2. The GGD parameters are estimated using
the algorithm proposed in[35]. See figure 1 for an example
saliency map created using SUN.

It is possible to improve the discriminative power of ICA
filters by using a GGD fit to their responses [33]. This
is done by applying a parametric activation function that
weights each dimension of the features according to their
statistical frequency. The improved features f "are given by
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where v denotes the incomplete gamma function and the
other terms are those estimated for each of the d GGDs!'.
This works by nonlinearly weighting each dimension of f,
with rarer responses weighted more heavily.

3.4. Fixations: Spatial Pooling & Whitened PCA

The saliency map is normalized to sum to one and then
treated as a probability distribution. It is randomly sam-
pled T times. During each fixation ¢ a location ¢; is chosen
according to the saliency map. Centered at location ¢; we
extract a w X w X d stack of filter responses that have had
equation 3 applied to them. We let w = 51 in all of our
experiments®. The dimensionality of the patch stack is re-
duced by spatially subsampling it using a spatial pyramid
[17]. Our spatial pyramid divides up each w x w filter re-
sponse into 1 x 1,2 x 2, and 4 x 4 grids and the mean filter
response is computed in each grid cell. The spatial pyramid
levels are concatenated to form a vector, which is normal-
ized to unit length. Across the d stack layers this reduces
the dimensionality from w x w x d(i.e., 512d) to 21d. ¢;is
normalized by the height and width of the image and stored
along with the corresponding features.

After acquiring 7" fixations from every training image,
PCA is applied to the collected feature vectors. The first

'n [33] equation 3 was followed by the probit function. In our early
experiments we found that this decreased performance slightly while in-
creasing computation time, so we do not use it here.

2The value 51 comes from the equation w = 2 L%SJ + 1, where s =
128 is the smallest side of the input image due to the preprocessing steps
and r» = 5 (chosen arbitrarily).



500 principal components, corresponding to those with the
largest eigenvalues, are retained. The retained principal
components are then whitened (i.e., normalized according
to their eigenvalues to induce isotropic variance). Finally,
the post-PCA fixation features, denoted wy, ;, are each made
unit length.

3.5. Training & Classification

Classification is done using the NIMBLE approach [1].
NIMBLE uses kernel density estimation (KDE) to model
P (g:|C = k), where g; is the vector of fixation features
(i.e., from the procedure described in section 3.4) acquired
at time ¢ and k is one of the classes the model has been
trained on. The information acquired from fixations 1 to T’
is combined by assuming fixations are statistically indepen-
dent (i.e., the Naive Bayes’ assumption),

T
P({g}llc=k)=[[P@EIC=k. @

This is turned into a classifier using Bayes’ rule,

T
P(C:k|{gt}f)o<Pc kgp (&|C=k), (5

where P (C' = k) is the class prior. In all of our experiments
we assume P (C = k) is uniform and we fix T = 100,
which would be about 30 s of viewing time for a person
assuming 3 fixations/second.

We use 1-nearest neighbor KDE in our implementa-
tion of P (g:|C = k). We combine the feature-to-exemplar
based distance with a distance based on their difference in
normalized (x, y) —location coordinates [2, 15]. This gives
us a parameter free estimate of the posterior probability of
each class given the fixations acquired from an image:

1

—gls +alvea

P (g:|C = k) x max
U Wk

— |+ €

(6)
where € > 0 is a small value to ensure P (g;|C = k) is a
real number (we use ¢ = 107%), Wy, 1s @ vector represent-
ing the ’th exemplar of a fixation from class k, « = 0.5is a
fixed location “weight” term, vy, ; is the normalized (z, y)-
coordinates at the center of wy, ;, and ¢, is the correspond-
ing location term for g;. After T fixations the class with
the greatest posterior is assigned. This approach is simple,
requires no tuning of kernel variance, and Barrington et al.
[1] found it exhibited greater accuracy than Gaussian KDE.
Our implementation performs a simple linear search, since
most methods to speed up nearest neighbor tend to provide
little benefit in high dimensional spaces.

3.6. Parameter Selection

While there are not many “meta-parameters” in our ap-
proach, we do need to select the size and number of the im-
age patches/filters. This was done by combining the Butter-
ﬂy3 [18] and Bird [16] datasets resulting in a dataset with 12
classes that exhibit many of the challenges we wish to over-
come. We selected 7 random images per class to train the
model and 14 different images per class to test the model.
The model that achieved the greatest accuracy was retained.
The filter size ranged from 12 to 26 pixels and the number
of filters ranged from 122 to 262.The best parameters were
found to be 192 filters of size 24 x 24 pixels. Due to time
constraints we had to fix some parameters to reasonable val-
ues. For example, the number of principal components was
held fixed at 500, we did not tune the size of the fixations,
and we fixed the location weight term « to %

4. Experiments & Results

For each dataset we perform 5-fold random cross-
validation. Unless otherwise noted, per cross-validation run
each class has n randomly selected training images chosen,
where n is varied, and up to 30 test images randomly se-
lected (distinct from the training images) unless fewer than
30 are available in which case all of the available images
are used. After each run we compute the mean per class
accuracy (i.e., the standard procedure for Caltech-101 and
Caltech-256). We report the mean accuracy of the runs and
we compare against recent state-of-the art results. The raw
numbers can be found in the supplementary materials.

4.1. Objects

The Caltech-101 dataset [6] contains 101 diverse classes
(e.g., faces, beavers, anchors, etc.) with a large amount
of intra-class appearance and shape variability. Caltech-
256 [11] is similar to Caltech-101, but it contains 256
classes with even greater intra-class variability and it ex-
hibits location variability. In both cases the images vary
in resolution. The NIMBLE framework handles this ele-
gantly, since it only extracts square fixations of f’ features.
Our Caltech-101 results compared with other recent papers
[2, 8, 12, 17, 28, 38, 11] are shown in figure 5 and our
Caltech-256 results are given in figure 6. Our results are
very good compared to other approaches using a single fea-
ture type, but they are exceeded when multiple feature types
are used. For example, Gehler and Nowozin [8] train a
SVM for each of their five feature types and then use boost-
ing to combine the kernels whereas our approach uses a sin-
gle feature type and a much simpler classifier.



Caltech-101 Results
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Figure 5. Performance of our approach on the Caltech-101 dataset
[6] compared to other recent papers [2, 8, 12, 17, 28, 38, 11].
Our performance is comparable to Gehler and Nowozin [8] when
they use a combination of five types of features, although we are
slightly exceeded by Boiman et al. [2] when they use five feature
types. We substantially exceed all of the single feature approaches.
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Figure 6. Performance of our approach on the Caltech-256 dataset
[11] compared to other recent papers [2, 8, 28, 38, 11].

4.2. Faces

The Aleix and Robert (AR) dataset [22] is a large face
dataset containing over 4,000 color face images (768 x 576)
under varying lighting, expression, and dress conditions
(see figure 7). We use images from 120 individuals with
26 images each. We trained our system using 1, 5, and 8
instances per class and tested on the remaining images. To
compare our results to Singh et al. [34], for the single train-
ing instance case we used the first image for each person

3We combine the two Monarch butterfly classes in [18].

Figure 7. Several people from the AR dataset [22] under various
lighting, clothing, and facial expression conditions.

AR Dataset Results
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Figure 8. Performance results from the AR face dataset compared

with other recent papers [34, 29, 20]. Our results are very good

even when using a single training instance. Note that our approach

and Pinto et al. [29] have very similar performance for 5 and 8

training instances.

in a default pose with uniform lighting and for the 2 and 3
image cases we used the first 3 images per person, which
also have uniform lighting and dress. For the 5 and 8 image
cases we picked the training images randomly, and tested
on all of the remaining images. The performance of our
approach appears to be comparable to [28] when we use 5
and 8 training instances, while exceeding Singh et al.’s ap-
proach [34], which includes a face detection preprocessing
step and was specially designed to handle disguises such as
sunglasses.

To compare the performance of our model with NIM
[15], another fixation-based approach, we trained our model
using only the first image from the first 10 classes in AR.
After 100 train and test fixations, NIM achieved 92.2% ac-
curacy compared to our 100% accuracy.

4.3. Flowers

The 102 Flowers dataset consists of 8189 images from
102 flower categories [25]. Several examples are shown in
figure 9. Every class has at least 40 images. We train our



Figure 9. Several examples from the 102 Flowers dataset [25].
102 Flowers Dataset Results
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Figure 10. Performance results from the 102 Flowers dataset [25].
Nilsback and Zisserman used segmented images with a combina-
tion of four feature types with multiple kernel learning [25]. Our
performance on unsegmented images is almost as good as their
four feature type system and our performance is substantially bet-
ter than their best model using a single feature type.

model using 1, 5, 10, 15, 20, and 30 unsegmented training
images per class. Using a segmented version of the dataset
with 20 training images per class Nilsback and Zisserman
[25] achieved 72.8% accuracy with a combination of HSV
descriptors, two types of SIFT descriptors, and a HOG de-
scriptor.

5. Discussion & Conclusions

One of the reasons we think our approach works well is
because it employs a nonparametric exemplar-based clas-
sifier. This yields several immediate benefits: it does not
degrade the discriminability of the features [2] and it lets
us employ a simple representation of spatial relationships.
While our approach requires no training other than PCA
once the features are learned, a linear search is suboptimal
and there is likely a large amount of duplicate information
amongst the stored exemplars. To some extent this could
be remedied by employing an algorithm for pruning similar
nearest neighbors.

We are investigating better ways to make and combine
fixations. The Naive Bayes’ assumption is obviously false
and learning a more flexible model (e.g., a Chow-Liu tree)
could lead to performance improvements. Using a Markov
model to determine where to fixate may also prevent exces-
sive fixations to salient regions that are irrelevant based on
the trained classes and recently acquired fixations [27, 23].

Our work demonstrates that fixation-based approaches
can be extremely successful. They largely resolve issues
with translation variance and provide a compelling appli-
cation for saliency maps. We consistently perform well
compared to other approaches using few training examples.
While we have employed sparse visual features learned
from natural image patches, the approach can be readily ex-
tended to additional feature types. For many datasets our
results using a single feature type are comparable to results
using sophisticated methods to combine five different fea-
ture types. A video demo and MATLAB source code for our
approch are provided at http://www.chriskanan.com/nimble
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